1、必修三(一)算法1.算法通常是指用计算机来解决的某一类问题的 程序或步骤 ,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形几种常用的图形符号的名称及作用如下:图形符号名称作用起止框表示算法的开始或结束处理框赋值、计算、数据传送输入输出框输入的数据或信息的输出判断框根据条件决定不同的流向3.算法的三种基本逻辑结构是顺序结构、条件结构和循环结构.4.输入语句、输出语句分别用来实现算法的 输入 和 输出 功能其一般格式为:输入语句:(BASIC) INPUT 提示信息;变量 (Scilab) x=i
2、nput(提示信息) 输出语句:(BASIC) PRINT 提示信息;表达式 (Scilab) print(%io(2),表达式) 或 表达式5.赋值语句的功能是给变量 赋初值或计算 ,其一般格式是: 变量=表达式 。6条件语句表达算法中 条件 结构其一般格式为: BASICScilab格式一IF 条件 THEN 语句1ELSE 语句2END IFif 条件 语句1;else 语句2;end格式二IF 条件 THEN 语句END IFif 条件 语句;end7.循环语句有两种类型,其一般格式是:BASICScilab格式一WHILE 条件 循环体WENDwhile 条件 循环体end格式二DO
3、 循环体LOOP UNTIL 条件for 循环变量=初值:步长:终值 循环体end注意:BASIC语句中的关键字、变量名大小写均可,且作用相同,如A和a是同一个变量。SCILAB中的关键字必须全部小写,变量名中的字母大小写均可,但不相同,如A和a是两个不同的变量。8.更相减损术:求两个自然数m,n的最大公约数的算法。将两个数中较大的数减去较小的数,将差与较小的数比较,再重复以上过程,直到两个数相等时为止,这时这两个相等的数就是m,n的最大公约数。9.秦九韶算法:一种求多项式的值的算法。方法是将多项式通过加括号变形,如.这样计算的好处,一是大大减少了乘法的次数,二是每次计算都是相同的过程将上次的
4、结果乘以x再加下一个系数,这样很容易用计算机来实现。注意计算时若有系数为0的项要补上该项(二)统计一、抽样方法 1.简单随机抽样适用范围:总体容量N较小,且没有明显的个体差异.2.系统抽样的适用范围:总体容量较大,且没有明显的个体差异.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样(2)抽取数量的计算:各层抽取的数量之比,等于各层的数量之比.如各层分别有300,200,400个个体,则从各层中抽取的个体数量之比为300200400,即324.(3)适用范围:总体容量N较
5、大,且个体差异明显(有明显的层次).二、用样本估计总体1.用样本频率分布估计总体频率分布(1)频率分布直方图的做法求极差:即最大数与最小数的差;决定组距与组数:组距与组数的确定没有固定的标准,常常需要一个尝试和选择的过程(试题中一般有规定);数据分组:计算各小组的频数和频率,列出频率分布表;画频率分布直方图:图中纵轴表示频率/组距,各小矩形的面积=频率.(2)茎叶图:当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,这对数据的记录和表示都能带来方便。2.用样本的数字特征估计总体(1)众数:出现次数最多的数.若用频率分布直方图来估计众数,则可用最高矩形的横坐
6、标的中点表示.众数可能不只一个.中位数:将数据从小到大排列,则处于正中间的一个数叫做中位数.若数据个数为偶数,则取中间两个数的平均数作为中位数.平均数:的平均数为:(2)标准差:的标准差为标准差的平方叫方差,用表示.标准差(或方差)越小,说明数据波动越小,越稳定;标准差越大说明数据越分散,越不稳定. 三、变量间的相关关系线性相关与最小二乘法回归直线:叫做回归中心,回归直线必定经过回归中心.(三)概率一、随机事件的概率1.概率的相关概念(1)事件;(2)频数与频率;(3)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率
7、.(4)事件的关系与运算:对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件(或称事件A包含于事件B),记作BA(或AB).若BA,且AB,那么称事件A与事件B相等,记作A=B.若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件或(和事件),记作AB(或AB)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作AB(或AB).若AB为不可能事件,那么称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生.若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件,其含义
8、是:事件A与事件B在任何一次试验中有且仅有一个发生2.概率的性质:(1)0P(A)1.(2)必然事件的概率为1,不可能事件的概率为0.(3)若A,B互斥,则有P(AB)=P(A)+P(B).(4)若A,B对立,则P(B)=1-P(A).注:概率为1的不一定是必然事件,概率为0的不一定是不可能事件.二、古典概型1.基本事件:任何两个基本事件都是互斥的;任何一个事件都可以表示成基本事件的 和 .2.古典概型:满足以下两个条件的概率模型:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等3.古典概型概率公式:P(A)= 三、几何概型1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型2.几何概型概率计算:P(A)=