1、课题课教学设计表选题名称完全平方公式(1)授课对象学生课时1课时选题中所包含的数学知识1、 同类项的定义及合并同类项法则;2、 多项式乘以多项式法则;3、 代数式及等式定义。教学活动设计一、提出问题引入同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,下面计算下列四个小题: (2m+3n)2=_,(-2m-3n)2=_,(2m-3n)2=_,(-2m+3n)2=_。通过上面的计算你能总结出结果与多项式中两个单项式的关系吗?二、分析问题1、学生回答分组交流、讨论(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12m
2、n+9n2, (-2m+3n)2= 4m2-12mn+9n2。(1)原式的特点。(2)结果的项数特点。(3)三项系数的特点(特别是符号的特点)。(4)三项与原多项式中两个单项式的关系。2、学生回答总结完全平方公式的语言描述:两数和的平方,等于它们平方的和,加上它们乘积的两倍;两数差的平方,等于它们平方的和,减去它们乘积的两倍。3、学生回答 完全平方公式的数学表达式: (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.三、运用公式,解决问题学生在运用公式(a-b)2=a2-2ab+b2时容易错误的认为(a-b)=a-b1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)
3、(m+n)2=_, (m-n)2=_, (-m+n)2=_, (-m-n)2=_, (a+3)2=_, (-c+5)2=_,(-7-a)2=_, (0.5-a)2=_.2、判断:( ) (a-2b)2= a2-2ab+b2( )(2m+n)2= 2m2+4mn+n2( ) (-n-3m)2= n2-6mn+9m2( ) (5a+0.2b)2= 25a2+5ab+0.4b2( ) (5a-0.2b)2= 5a2-5ab+0.04b2( ) (-a-2b)2=(a+2b)2( ) (2a-4b)2=(4a-2b)2( ) (-5m+n)2=(-n+5m)23、小试牛刀 (x+y)2 =_; (-y
4、-x)2 =_; (2x+3)2 =_; (3a-2)2 =_; (2x+3y)2 =_; (4x-5y)2 =_; (0.5m+n)2 =_; (a-0.6b)2 =_.四、学生小结你认为完全平方公式在应用过程中,需要注意那些问题?(1) 公式右边共有3项。(2) 两个平方项符号永远为正。(3)中间项的符号由等号左边的两项符号是否相同决定。(4)中间项是等号左边两项乘积的2倍。五、冒险岛:(1)(-3a+2b)2=_(2)(-7-2m) 2 =_(3)(-0.5m+2n) 2=_(4)(3/5a-1/2b) 2=_(5)(mn+3) 2=_(6)(a2b-0.2) 2=_(7)(2xy2-3
5、x2y) 2=_(8)(2n3-3m3) 2=_六、学生自我评价小结 通过本节课的学习,你有什么收获和感悟?本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。七作业 P34 随堂练习,P36,习题A组七、课后反思本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准(mn+9n)4