收藏 分销(赏)

高考数学选择题解题策略与方法.doc

上传人:仙人****88 文档编号:5478464 上传时间:2024-11-11 格式:DOC 页数:11 大小:888.01KB
下载 相关 举报
高考数学选择题解题策略与方法.doc_第1页
第1页 / 共11页
高考数学选择题解题策略与方法.doc_第2页
第2页 / 共11页
高考数学选择题解题策略与方法.doc_第3页
第3页 / 共11页
高考数学选择题解题策略与方法.doc_第4页
第4页 / 共11页
高考数学选择题解题策略与方法.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、高考数学选择题解题策略与方法 四川省宜宾市第一中学校 李波 易存新选择题作为2016年全国新课标卷II的主要题型之一,个数从四川卷的10个上升为12个,分值60分,占全卷分数的40%,解选择题的快慢和成功率的高低对于考生能否及时进入最佳状态,以至于整个考试的成败起着举足轻重的作用纵观过去几年的全国II卷,选择题的难度适中,知识覆盖面广,主要考察学生对基础知识的理解、基本技能的熟练程度、基本方法的正确合理运用、问题考虑的严谨度和基本计算的准确度,注重多个知识点的小综合,渗透各种数学思想方法,充分考查灵活运用基础知识解决数学问题的能力选择题属于“小、灵、活”的题目,其解答的基本策略是:充分利用题设

2、条件和选项提供的信息做出判断,定性与定量分析相结合,特殊与一般方法相结合,间接与直接相结合,小题小做,小题巧做下面结合2015年高考试题,谈谈选择题解题的策略和方法(一) 直接法 在解选择题的过程中,把选择题当作填空题或是解答题,直接从题设条件出发,利用已知的公理、概念、定理、公式结论等,通过运算、推理等得到正确选项的方法称为直接法,直接法是解选择题最基本的方法,必须要掌握【例1】(2015年全国I理10)的展开式中,的系数为(A)10 (B)20 (C)30 (D)60解析:在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 C.【例2】(2015年全国

3、I理12)设函数=,其中,若存在唯一的整数使得0,则的取值范围是 (A) (B) (C) (D)解析:由题意可知存在唯一整数,使得,设,由可知作出的大致图像可知,故选D.【例3】(2015年全国II理12)设函数是奇函数的导函数,当时,则使得成立的x的取值范围是(A) (B) (C) (D)解析:令选A【例】(2015年广东理)已知双曲线:的离心率,且其右焦点为,则双曲线的方程为 (A) (B) (C) (D) 解析:因为所求双曲线的右焦点为且离心率为,所以,所以所求双曲线方程为,故选【例】(2015年湖南理)已知点,在圆上运动,且,若点的坐标为,则的最大值为(A)6 (B)7 (C)8 (D

4、)9解析:因为A,B,C均在单位圆上,AC为直径,故,又,所以,故最大值为7,故选B【例6】(2015年安徽理10)已知函数(,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是 (A) (B) (C) (D)【例7】(2015年重庆理9)若,则(A)1 (B) 2 (C) 3 (D) 4解析:,故选C(二) 排除法数学选择题的正确答案具有唯一性,当从题设条件入手比较困难时,可以从考虑从选择支入手,排除三个错误答案,余下那个自然正确【例1】(2015年广东理8)若空间中个不同的点两两距离都相等,则正整数的取值 (A)至多等于3 (B)至多等于4 (C)等于5 (D)大于5

5、解析:首先我们知道正三角形的三个顶点满足两两距离相等,于是可以排除C,D又注意正四面体到四个顶点也满足两两距离相等,于是排除A,故选B【例2】(2015年山东理5)不等式的解集是(A)(-,4) (B)(-,1) (C)(1,4) (D)(1,5)解析:当 1时,不等式可化为(1)+(5)2,即42,显然成立,所以此时不等式的解集为(-,1);当 时,不等式可化为1+(5)2,即262,解得5时,不等式可化为(1)(5)2,即42,显然不成立,所以此时不等式无解,综上,不等式的解集为(-,4),故选A【例3】(2015年湖北理10)设,表示不超过的最大整数. 若存在实数,使得 同时成立,则正整

6、数的最大值是 (A)3 (B)4 (C) 5 (D)6【例4】(2015年浙江理7)存在函数满足:对于任意都有(A) (B) (C) (D) 解析:对于任一变量有唯一的与之相对应对于A,当或时,均为1,而与此时均有两个值,故A,B错误;对于C,当或时,而有两个值,故C错误,故选D(三) 特例法在不影响结论的前提下,用特殊值代入原题或考虑特殊情况、特殊位置,从而作出判断的方法称为特例法(也称特殊值法),特例法在使用时往往也是利用选择支的特点进行排除,所以有不少是利用特例的排除法【例1】(2015年四川理7)设四边形ABCD为平行四边形,.若点M,N满足,则(A)20 (B)15 (C)9 (D)

7、6解析:把平行四边形ABCD特殊为矩形,且以为坐标原点,所在直线建立平面坐标系,则,所以,,故选C【例2】(2015年全国II理9)已知,是球的球面上两点,为该球面上的动点若三棱锥体积的最大值为36,则球的表面积为(A) (B) (C) (D)解析:特殊位置分析法,当与平面垂直时三棱锥的体积最大,故选C【例3】(2015年全II理11)已知A,B为双曲线E的左,右顶点,点M在E上,ABM为等腰三角形,且顶角为120,则E的离心率为(A) (B) (C) (D)解析:本题考查双曲线的标准方程和简单几何性质、解直角三角形知识,正确表示点的坐标,利用“点在双曲线上”列方程是解题关键设双曲线方程为,不

8、妨设点在双曲线的右支上,如图所示:,过点作轴,垂足为,设,则在中,代入双曲线方程得,故选【例4】(2015年湖南理9)将函数的图像向右平移个单位后得到函数的图像,若对满足的,有,则(A) (B) (C) (D)解析:由已知得,满足不妨设此时和分别取得最大值与最小值,又令,此时又,故,故选【例5】(2015年福建理10)若定义在上的函数 满足 ,其导函数 满足 ,则下列结论中一定错误的是(A) (B) (C) (D) 解析:取满足题意的函数,若取,则,所以排除A;若取,则,所以排除D;取满足题意的函数,若取,则,所以排除B,故结论一定错误的是C(四) 数形结合法 数形结合是高考要求的六大数学思想

9、方法之一,“数”可以展示严密的逻辑推理,“形”可以将抽象问题直观化,更易于理解二者结合尤其是以“形”表“数”,可以揭示问题的本质,有助于问题的迅速分析和解决【例1】(2015年安徽理9)函数的图象如图所示,则下列结论成立的是 (A), (B), (C), (D),解析:的图像与轴分别交于N,M,且点M的纵坐标与点N的横坐标均为正,故,又函数图像间断点的横坐标为正,故,故选C【例2】(2015年山东理10)设函数则满足的取值范围是(A) (B) (C) (D) 解析:由题意知,由解得,所以故当时,方程化为,即,如图,分别作出与函数的图像,根据图像分析可知,A点横坐标为,故不符合题意当时,方程化为

10、,显然方程恒成立;当时,方程化为,显然方程恒成立所以的取值范围是【例3】(2015年四川理9)如果函数在区间上单调递减,则mn的最大值为(A)16 (B)18 (C)25 (D)解析:由已知得又对任意的,所以即,画出该不等式组表示的平面区域如图中阴影部分所示,令,则当时,当时,由线性规划的相关知识知,只有当直线与曲线相切时,取得最大值,由解得,所以,故选B【例4】(2015年天津理8)(8)已知函数 函数 ,其中,若函数 恰有4个零点,则的取值范围是(A) (B) (C)(D)解析:由得,所以,即,所以恰有4个零点等价于方程有4个不同的解,即函数与函数的图象的4个公共点,由图象可知.故选D(五

11、)特征分析法对题设条件和选择支的特点进行分析,发现规律,归纳得出正确判断的方法,此法对函数图象题用得较多【例1】(2015年全国II理10)如图,长方形的边,是的中点,点沿着边,与运动,记将动点到,两点距离之和表示为的函数,则的图象大致为解析:本题考查函数的图像与性质,直接求函数完整解析式很难,但是如果认真审题,读懂题意,通过点P的运动轨迹来判断图像的对称性以及特殊点函数值的比较,也可较容易找到答案即:当点在边上动动时,其轨迹是非线性的,故排除,取特殊位置和的中点,可得,而,故选.【例2】(2015年北京理7)如图,函数的图象为折线,则不等式的解集是(A) (B)(C) (D)解析:因为的定义

12、域为,排除B项,又因为经过原点与点,由图象特征可知,故选C.【例3】(2015年福建理8)若 是函数 的两个不同的零点,且 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 的值等于( )(A)6 (B)7 (C)8 (D)9解析:由韦达定理得,则,当适当排序后成等比数列时,必为等比中项,故,当适当排序后成等差数列时,必不是等差中项,当是等差中项时,解得,;当是等差中项时,解得,综上所述,所以,故选D(六) 估算法所谓估算法就是一种粗略的计算方法,即对有关数值作扩大或缩小,从而对运算结果确定出一个范围或作出一个估计的方法【例1】(2015年全国I理4)在投篮测试中,每人投3次,至少

13、投中2次才能通过测试已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432(C)0.36(D)0.312解析:根据独立重复试验公式得,该同学投3次,恰好投中2次的概率为,至少投中2次才能通过测试的概率为=0.648一定大于0.432,故选A. 【例2】(2015年全国I理6)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(A)14斛 (B)22斛 (C)36斛 (D)66斛解析:设圆锥底面半径为r,则=,所以米堆的体积为=,约为35多点,故堆放的米为1.62,大于17,小于35,故只有B,故选B.从以上例题和解答可以看出,合理的选择解答方法有助于解选择题的过程变得简单,为后续题目的解答奠定良好的心理基础和提供宝贵的时间,因此灵活运用各种方法解选择题可以充分提高试卷得分率,获得更好的成绩

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服