1、初中数学课堂中创设情境浅谈实验中学 叶红涛创设数学问题情境已成为新课堂的显著特征。从社会学的角度看,“情境”是指一个人正在进行某种行为时所处的社会环境,是人们社会行为产生的条件;从心理学角度看,“情境”表现为多重刺激模式、事件和对象等;从学生角度看,“情境”可以理解为学生从事学习活动,产生学习行为的一种环境和背景,它提供给学生思考空间的智力背景,产生某种情感体验。 新课标强调学生是学习的主人,教师是数学学习的组织者、引导者、合作者。数学课堂教学都要围绕学生的发展开展教学活动。因此,教师在创设问题情境时,要准确地确定学生的“现有发展水平”和“最近发展区”,以现有发展区为基础,以最近发展区为定向,
2、利用新知识与学生认知结构中的有关知识之间的矛盾,提供产生数学问题的背景或材料,创设有利于学生发现问题、提出问题的情境,使创设的情境合情合理,能吸引学生积极地投入到数学活动中来。同时,通过研究可培养数学教师对新课示的重新认识与理解,增强课程实施的自觉性,让教师也能积极参与到新课程的实践中来。 课堂教学中有了学习气氛和认知冲突,即创设了思维情境,学生便有了展开思维的动因、时间和空间,从而有助于数学课堂教学质量的提高。 一、引入新课中创设思维情境 新课的引入,这是教学过程的一个重要环节,教师若不注意思维情境的创设,师生便不易进入“角色”,教师的导学过程和导学效应便不能得到充分体现,从而导致整堂课欠佳
3、的教学效果。引入新课中创设思维情境有以下几种方法:1.巧设悬念,诱发学生的学习动机和学习意向。心理学的知识告诉我们:意向是在一定恰当的问题情境中产生的。如在教学相似三角形的引入时,提问学生:不过河,如何测河对岸的树高?这样很容易激发学生的好奇心和学习意向。2.提出疑点,点燃学生的思维火花。“导学”的中心在于引导。引在堵塞处,导在疑难处,搞好引导,能有效地促进思维状态的转化。在新课引入时,根据教学内容,提出一些疑问,就会引发学生解疑的要求。如在教学负数的引入时,提问学生:1.你有5元钱,还了2元钱,还有多少钱?列式算出。2.你有5元饯,还了8元钱,还有多少钱?列式后能算出结果吗?3.直观演示、探
4、索、发现,调动学生的思维和学习兴趣。在认识结构中,直观形象具有的鲜明性和强烈性往往给抽象思维提供了较多的感性认识经验。心理学家鲁宾斯坦指出:“直观要素以概括的映象表象的形态,以及仿佛显示着和预知着还没有以同的形态展开的思想系统图式的形态,参加在思维过程中。”因此在新知识教学引入时,根据教学内容,重视直观演示、实验操作,就会使学生感兴趣,就能较好地为新知识的学习创设思维情境。引导学生探索、发现,其进行的过程中就蕴含着很好的思维情境。学生在尝试了探索、发现后的乐趣和成功的满足后印象深刻,学习信心倍增,从而能较快地牢固地接收新知识。如在“一元二次方程的根与系数的关系”一节课的引入时,先让学生解五六个
5、一元二次方程,并引导学生列表:各个方程的二次项系数、一次项系数、常数项、x1、x2、x1x2、x1x2,并探索发现其关系。此外,在新课引入时还可通过以旧引新复习与新课有联系的旧知识,引入新知识;故事激趣与新课有关的数学和数学家的趣味故事等以创设思维情境。 二、新课进行过程中创设思维情境 学生接收新知识的过程,根据皮亚杰的理论,有两种方式:一种方式是同化把新知识转化为旧知识;一种是顺应当新知识不能被旧知识同化时,要调整原有知识结构,去适应新知识。按照布鲁纳的观点,思维情境是借助于学生旧有的知识经验、认知结构,作为同化和顺应的外部条件。由此可见,在新课进行中思维情境的创设尤为重要。新课中创设思维情
6、境可采用以下方法:1.创造“愤悱”意境。“愤悱意境”,即所谓“欲知未知,半生不熟”的情境。“愤”是欲求明而不得,“悱”是想说又说不出来。在这种情境下学生跃跃欲试,学习积极性最高,一启则发。其具体作法是,抓住新旧知识的联结点,用旧知识作铺垫,由近及远、由浅入深,创设迁移情境,引导学生对照比较;抓住新授知识的内在联系,层层设问,促使学生的思维简约、越层、跳跃。在教学中应做到同化中有顺应,顺应中尽可能先同化,以进一步调整和完善认知结构在“一元一次方程的应用”例1的教学中我是这样进行的: 例:一面粉仓库存放的面粉运出15%后,还剩42500千克,这个仓库原有多少面粉?教师在黑板上画出简易画,显示具体情
7、景。此举激发了学生的积极性,寓教于乐。然后围绕例1设计以下几个问题让学生思考,分组讨论(1)本题有几个量?哪些是已知量?哪些是未知量? (2)题目给出了哪些条件? (3)题目中有何相等关系? (4)设哪个量为未知数? (5)能否列出方程? 此举通过设计有梯度的问题,层层深入,使学生始终处于主动状态。问题提出后,学生经过思考,展开热烈的讨论,对于问题(1)、(2),均能得到正确答案,而对于问题(3),有的学生认为“原来的面粉减去运出的面粉等于剩余的面粉”,有的则认为“运出的面粉加上剩余的面粉等于原来的面粉”等等。根据不同学生所得出的不同答案,教师或是直接给予肯定或是让其他学生发表意见,这样师生之
8、间、学生之间都融于交流互动的氛围中。由于问题(3)是解决例1的关键,关键问题攻克了,后面的两个问题就容易解决了。这时候,教师从踊跃举手的学生中挑选几位让他们写出问题(4)、(5)的答案,然后由学生们来做“小老师”,对学生给出的答案做出“诊断”,此时学生们参与教学的情绪更为高涨。最后,教师再做出归纳和小结,使学生们对“利用一元一次方程解应用题”有更加深刻、更加全面的认识,基本知识自然也得到巩固。在整个教学过程中,教师是“导演”,学生是“主角”,在教师的引导下,学生通过一系列的自主活动,真正成为数学问题的探索者和解决者。然后,教师严格按格式书写解题过程,目的是给学生以示范,培养其良好的解题习惯,并
9、为学生提供参考格式。在此教师的主导作用再次得到发挥。 这样的教学避免了教师面面俱到,既使学生动眼、动耳,又使学生动脑、动口、动手,学生的主体性得到充分发挥,从而真正达到“互动”的效果。 三、在练习和小结中创设思维情境 课堂练习是学生在一节课内对新知识的同化和顺应情况的一种检测,是学生对自己的认知活动的自我意识和自我体验,从中反馈出的信念可以得到及时评价和调整,同时课堂练习也是学生所掌握的基础知识和基本技能的内化过程。创设课堂练习的思维情境,能大大强化这个过程,因此要有目的、有选择性地安排课堂练习,一是通过“制错找因”,创设思维情境。练习中,根据所讲内容选编一些选择题或判断正误题,并要学生找出错误原因;二是编选变式题,使学生在不同的情境中把握概念的本质属性;三是编选的课堂练习要体现出一定的思维层次性,先直观后抽象,先浅后深。 在课堂小结中也要注意创设思维情境。小结是一堂课的“画龙点晴”处,它能使一堂课所讲知识及体现出的数学思想、数学思想方法系统化,初步形成认知结构。教师在小结时,或引导学生概括本堂内容、重点、关键,或利用提纲、图表、图示等,都能较好地创设出思维情境,所以要十分重视课堂小结在创设思维情境中的作用。