1、科学史融入数学教学的做法将科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学、学科学的良好风气有着重要作用。对此数学教学是有许多工作可做的。下面仅以讲授初三几何第七章“圆”为例,就如何将科学史融入课堂教学谈谈我的做法与体会。一、结合教材内容,“见缝插针”,使科学史自然融入课堂教学。“圆”是一个古老的课题,人类的生活与生产活动和它密切相关。有关圆的知识在战国时期的墨经、考工记等书中都有记载,授课中将有关史料穿插进去,作为课本知识的补充和延伸。例如讲解圆的定义与性质时,我向学生介绍,约在公元前二千五百年左右,我国已有了圆的概
2、念,考古说明我国夏代奴隶社会以前的原始部落时期就有圆形的建筑。至于圆的定义和性质在墨经中已有记载,其中,“圆,一中同长也”,即圆周上各点到中心的长度均相等;此外,还进一步说明“圆,规写交也”,即圆是用圆规画出来的终点与始点相交的线。这与欧几里得的定义相似,而墨经成书于公元前世纪,是在欧几里德诞生时间问世的。再比如圆心角、弓形、圆环形、圆内接正六边形、直角三角形的内切圆、圆锥等一系列概念与性质,在墨经、考工记、九章算术等书中都有记载,在讲到这些内容时,我便用几句话向同学们作简要介绍。这样,随着这一章教材的不断展开,同学们对我国古代在相关领域的发展概貌有个初步的了解,明白我国古代就对这些内容有了比
3、较全面、系统的认识。特别是早在战国时期就有了论证几何学的萌芽,几乎与古希腊的几何学同时产生。二、根据教材特点,适当选择科学史资料,有针对性地进行教学。圆周率是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家作出过卓越贡献。该章的“读一读:关于圆周率”对此作了简单的介绍,并提到祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取,如我国周髀算经就说“径一周三”,后人称之为“古率”。人们通过实践
4、逐步认识到用古率计算圆周长和圆面积时,所得到的值均小于实际值,于是不断利用经验数据修正值,例如古埃及人和巴比伦人分别得到和。后来古希腊数学家阿基米德(公元前年)利用圆内接和外切正多边形来求圆周率的近似值,得到当时关于的最好估值约为:;此后古希腊的托勒玫约在公元年左右又进一步求出。我国魏晋时代数学家刘微(约公元世纪)用圆的内接正多边形的“弧矢割圆术”计算值。当边数为时,得到。后来把边数增加到边时,进一步得到,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元年)更上一层楼,计算出的值在与之间。求出了准确到七位小数的值。我国以这一精度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公
5、元年左右才被中亚细亚的数学家阿尔卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界记录”,祖冲之计算出的圆周率就是其中一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新长征中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。为了使同学们认识科学的艰辛以及人类锲而不舍的探
6、索精神,我还进一步介绍:同学们都知道是无理数,可是在世纪以前,“是有理数还是无理数?”一直是许多数学家研究的课题之一。直到年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于值的进一步计算并没有终止,例如年德国人路多夫根据古典方法,用边形,计算到小数点后第位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在他的墓碑上,至今圆周率被德国人称为“路多夫数”。年英国的向克斯计算到位小数。年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重算一次。他从年月到年月用了一整年的时间来做此项工作,结果发现向克斯的位小数只有前面位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的值究竟有什么意义?专家们认为,至少可以由此来研究的小数出现的规律。更重要的是,对认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断深入的过程也使学生受到感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。