收藏 分销(赏)

初三培优二次函数辅导专题训练含详细答案.doc

上传人:快乐****生活 文档编号:5431308 上传时间:2024-10-31 格式:DOC 页数:32 大小:1.63MB
下载 相关 举报
初三培优二次函数辅导专题训练含详细答案.doc_第1页
第1页 / 共32页
初三培优二次函数辅导专题训练含详细答案.doc_第2页
第2页 / 共32页
点击查看更多>>
资源描述
初三培优二次函数辅导专题训练含详细答案 一、二次函数 1.如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0). (1)求点B的坐标; (2)已知,C为抛物线与y轴的交点. ①若点P在抛物线上,且,求点P的坐标; ②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值. 【答案】(1)点B的坐标为(1,0). (2)①点P的坐标为(4,21)或(-4,5). ②线段QD长度的最大值为. 【解析】 【分析】 (1)由抛物线的对称性直接得点B的坐标. (2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标. ②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QD⊥x轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】 解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0), ∴点B的坐标为(1,0). (2)①∵抛物线,对称轴为,经过点A(-3,0), ∴,解得. ∴抛物线的解析式为. ∴B点的坐标为(0,-3).∴OB=1,OC=3.∴. 设点P的坐标为(p,p2+2p-3),则. ∵,∴,解得. 当时;当时,, ∴点P的坐标为(4,21)或(-4,5). ②设直线AC的解析式为,将点A,C的坐标代入,得: ,解得:. ∴直线AC的解析式为. ∵点Q在线段AC上,∴设点Q的坐标为(q,-q-3). 又∵QD⊥x轴交抛物线于点D,∴点D的坐标为(q,q2+2q-3). ∴. ∵, ∴线段QD长度的最大值为. 2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC=ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E点坐标为(,﹣);(3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1•x2=﹣(m+1), ∵x12+x22﹣x1x2=13, ∴(x1+x2)2﹣3x1x2=13, ∴m2+3(m+1)=13, 即m2+3m﹣10=0, 解得m1=2,m2=﹣5. ∵OA<OB, ∴抛物线的对称轴在y轴右侧, ∴m=2, ∴抛物线的解析式为y=x2﹣2x﹣3; (2)连接BE、OE. ∵在Rt△BCD中,∠CBD=90°,EC=ED, ∴BE=CD=CE. 令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3, ∴A(﹣1,0),B(3,0), ∵C(0,﹣3), ∴OB=OC, 又∵BE=CE,OE=OE, ∴△OBE≌△OCE(SSS), ∴∠BOE=∠COE, ∴点E在第四象限的角平分线上, 设E点坐标为(m,﹣m),将E(m,﹣m)代入y=x2﹣2x﹣3, 得m=m2﹣2m﹣3,解得m=, ∵点E在第四象限, ∴E点坐标为(,﹣); (3)过点Q作AC的平行线交x轴于点F,连接CF,则S△ACQ=S△ACF. ∵S△ACQ=2S△AOC, ∴S△ACF=2S△AOC, ∴AF=2OA=2, ∴F(1,0). ∵A(﹣1,0),C(0,﹣3), ∴直线AC的解析式为y=﹣3x﹣3. ∵AC∥FQ, ∴设直线FQ的解析式为y=﹣3x+b, 将F(1,0)代入,得0=﹣3+b,解得b=3, ∴直线FQ的解析式为y=﹣3x+3. 联立, 解得,, ∴点Q的坐标为(﹣3,12)或(2,﹣3). 【点睛】 本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键. 3.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D. (1)求抛物线的函数表达式; (2)求直线BC的函数表达式; (3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限. ①当线段PQ=AB时,求tan∠CED的值; ②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标. 【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①.①P1(1-,-2),P2(1-,). 【解析】 【分析】 已知C点的坐标,即知道OC的长,可在直角三角形BOC中根据∠BCO的正切值求出OB的长,即可得出B点的坐标.已知了△AOC和△BOC的面积比,由于两三角形的高相等,因此面积比就是AO与OB的比.由此可求出OA的长,也就求出了A点的坐标,然后根据A、B、C三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】 (1)∵抛物线的对称轴为直线x=1, ∴−=1 ∴b=-2 ∵抛物线与y轴交于点C(0,-3), ∴c=-3, ∴抛物线的函数表达式为y=x2-2x-3; (2)∵抛物线与x轴交于A、B两点, 当y=0时,x2-2x-3=0. ∴x1=-1,x2=3. ∵A点在B点左侧, ∴A(-1,0),B(3,0) 设过点B(3,0)、C(0,-3)的直线的函数表达式为y=kx+m, 则, ∴ ∴直线BC的函数表达式为y=x-3; (3)①∵AB=4,PQ=AB, ∴PQ=3 ∵PQ⊥y轴 ∴PQ∥x轴, 则由抛物线的对称性可得PM=, ∵对称轴是直线x=1, ∴P到y轴的距离是, ∴点P的横坐标为−, ∴P(−,−) ∴F(0,−), ∴FC=3-OF=3-= ∵PQ垂直平分CE于点F, ∴CE=2FC= ∵点D在直线BC上, ∴当x=1时,y=-2,则D(1,-2), 过点D作DG⊥CE于点G, ∴DG=1,CG=1, ∴GE=CE-CG=-1=. 在Rt△EGD中,tan∠CED=. ②P1(1-,-2),P2(1-,-). 设OE=a,则GE=2-a, 当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a), ∴1=1×(2-a), ∴a=1, ∴CE=2, ∴OF=OE+EF=2 ∴F、P的纵坐标为-2, 把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+或1- ∵点P在第三象限. ∴P1(1-,-2), 当CD为斜边时,DE⊥CE, ∴OE=2,CE=1, ∴OF=2.5, ∴P和F的纵坐标为:-, 把y=-,代入抛物线的函数表达式为y=x2-2x-3得:x=1-,或1+, ∵点P在第三象限. ∴P2(1-,-). 综上所述:满足条件为P1(1-,-2),P2(1-,-). 【点睛】 本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果. 4.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示. (1)求y与x的函数关系式,并写出x的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润? 【答案】(1)y=﹣20x+500,(x≥6);(2)当x=15.5时,w的最大值为1805元;(3)当x=13时,w=1680,此时,既能销售完又能获得最大利润. 【解析】 【分析】 (1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b即可求解; (2)由题意得:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,即可求解; (3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x)≥12000,解得:x≤13,当x=13时,既能销售完又能获得最大利润. 【详解】 解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:, 解得:, 即:函数的表达式为:y=﹣20x+500,(x≥6); (2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大, 则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6), ∵﹣20<0,故w有最大值, 当x=﹣==15.5时,w的最大值为1805元; (3)当x=15.5时,y=190, 50×190<12000, 故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x元时,既能销售完又能获得最大利润w, 由题意得:50(500﹣20x)≥12000,解得:x≤13, w=﹣20(x﹣25)(x﹣6), 当x=13时,w=1680, 此时,既能销售完又能获得最大利润. 【点睛】 本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值). 5.(2017南宁,第26题,10分)如图,已知抛物线与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N. (1)直接写出a的值、点A的坐标及抛物线的对称轴; (2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标; (3)证明:当直线l绕点D旋转时,均为定值,并求出该定值. 【答案】(1)a=,A(﹣,0),抛物线的对称轴为x=;(2)点P的坐标为(,0)或(,﹣4);(3). 【解析】 试题分析:(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴; (2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可; (3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可. 试题解析:(1)∵C(0,3),∴﹣9a=3,解得:a=. 令y=0得:,∵a≠0,∴,解得:x=﹣或x=,∴点A的坐标为(﹣,0),B(,0),∴抛物线的对称轴为x=. (2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°. ∵AE为∠BAC的平分线,∴∠DAO=30°,∴DO=AO=1,∴点D的坐标为(0,1). 设点P的坐标为(,a). 依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2. 当AD=PA时,4=12+a2,方程无解. 当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0). 当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4,∴点P的坐标为(,﹣4). 综上所述,点P的坐标为(,0)或(,﹣4). (3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:,解得:m=,∴直线AC的解析式为. 设直线MN的解析式为y=kx+1. 把y=0代入y=kx+1得:kx+1=0,解得:x=,∴点N的坐标为(,0),∴AN==. 将与y=kx+1联立解得:x=,∴点M的横坐标为. 过点M作MG⊥x轴,垂足为G.则AG=. ∵∠MAG=60°,∠AGM=90°,∴AM=2AG==,∴= == =. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M的坐标和点N的坐标是解答问题(3)的关键. 6.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5). (Ⅰ)求二次函数的解析式及点A,B的坐标; (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标; (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标. 【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3). 【解析】 【分析】 (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标; (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”; (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可. 【详解】 (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1, ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5, 令y=0,得到:x2﹣4x﹣5=0, 解得x=﹣1或5, ∴A(﹣1,0),B(5,0). (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5). 把点Q′坐标代入y=﹣x2+4x+5, 得到:m2﹣4m﹣5=﹣m2﹣4m+5, ∴m=或(舍弃), ∴Q(,). (Ⅲ)如图,作MK⊥对称轴x=2于K. ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形. ∵此时点M的横坐标为1, ∴y=8, ∴M(1,8),N(2,13), ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形, 此时M′的横坐标为3,可得M′(3,8),N′(2,3). 【点睛】 本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形. 7.如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P. (1)当抛物线F经过点C时,求它的解析式; (2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小. 【答案】(1) ;(2). 【解析】 【分析】 (1)根据抛物线F:y=x2-2mx+m2-2过点C(-1,-2),可以求得抛物线F的表达式; (2)根据题意,可以求得yP的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小. 【详解】 (1) ∵抛物线F经过点C(-1,-2), ∴. ∴m1=m2=-1. ∴抛物线F的解析式是. (2)当x=-2时,=. ∴当m=-2时,的最小值为-2. 此时抛物线F的表达式是. ∴当时,y随x的增大而减小.  ∵≤-2, ∴>. 【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题. 8.已知关于x的一元二次方程x2﹣(2k+1)x+k2=0有两个实数根. (1)求k的取值范围; (2)设x1,x2是方程两根,且,求k的值. 【答案】(1)k≥﹣;(2)k=. 【解析】 【分析】 (1)根据方程有两个实数根可以得到△≥0,从而求得k的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k的值即可. 【详解】 解:(1)△=(2k+1)2﹣4k2=4k2+4k+1﹣4k2=4k+1 ∵△≥0 ∴4k+1≥0 ∴k≥﹣; (2)∵x1,x2是方程两根, ∴x1+x2=2k+1 x1x2=k2, 又∵, ∴, 即 , 解得:, 又∵k≥﹣ , 即:k=. 【点睛】 本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于 ,两根之积等于”是解题的关键. 9.如图,抛物线交轴于,两点,交轴于点C,与过点C且平行于x轴的直线交于另一点,点P是抛物线上一动点. (1)求抛物线解析式及点D的坐标; (2)点在轴上,若以,,,为顶点的四边形是平行四边形,求此时点的坐标; (3)过点作直线CD的垂线,垂足为,若将沿翻折,点的对应点为.是否存在点,使恰好落在轴上?若存在,求出此时点P的坐标;若不存在,说明理由. 【答案】(1);点坐标为; (2)P1(0,2); P2(,-2);P3(,-2) ; (3)满足条件的点有两个,其坐标分别为:(, ),(,). 【解析】 【分析】 1)用待定系数法可得出抛物线的解析式,令y=2可得出点D的坐标 (2)分两种情况进行讨论,①当AE为一边时,AE∥PD,②当AE为对角线时,根据平行四边形对顶点到另一条对角线距离相等,求解点P坐标 (3)结合图形可判断出点P在直线CD下方,设点P的坐标为(,),分情况讨论,①当P点在y轴右侧时,②当P点在y轴左侧时,运用解直角三角形及相似三角形的性质进行求解即可 【详解】 解:(1)∵抛物线经过,两点, ∴,解得:,, ∴抛物线解析式为:; 当时,,解得:,(舍),即:点坐标为. (2)∵,两点都在轴上,∴有两种可能: ①当为一边时,∥,此时点与点重合(如图1),∴, ②当为对角线时,点、点到直线(即轴)的距离相等, ∴点的纵坐标为(如图2), 把代入抛物线的解析式,得:, 解得:,, ∴点的坐标为,, 综上所述:; ; . (3)存在满足条件的点,显然点在直线下方,设直线交轴于, 点的坐标为(,), ①当点在轴右侧时(如图3), , , 又∵, ∴, 又,∴, ∴, ∵,,,∴,∴, ∴,==, 即,∴点的坐标为(,), ②当点在轴左侧时(如图4), 此时,,==, =-()=, 又∵,, ∴,又 ∴,∴, ∵,,, ∴,∴, ∴, ==, 此时,点的坐标为(,). 综上所述,满足条件的点有两个,其坐标分别为:(,),(,). 【点睛】 此题考查二次函数综合题,解题关键在于运用待定系数法的出解析式,难度较大 10.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m. (1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由. 【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】 分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式; (2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值; (3)存在四种情况: 如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标. 详解:(1)如图1,设抛物线与x轴的另一个交点为D, 由对称性得:D(3,0), 设抛物线的解析式为:y=a(x-1)(x-3), 把A(0,3)代入得:3=3a, a=1, ∴抛物线的解析式;y=x2-4x+3; (2)如图2,设P(m,m2-4m+3), ∵OE平分∠AOB,∠AOB=90°, ∴∠AOE=45°, ∴△AOE是等腰直角三角形, ∴AE=OA=3, ∴E(3,3), 易得OE的解析式为:y=x, 过P作PG∥y轴,交OE于点G, ∴G(m,m), ∴PG=m-(m2-4m+3)=-m2+5m-3, ∴S四边形AOPE=S△AOE+S△POE, =×3×3+PG•AE, =+×3×(-m2+5m-3), =-m2+m, =(m-)2+, ∵-<0, ∴当m=时,S有最大值是; (3)如图3,过P作MN⊥y轴,交y轴于M,交l于N, ∵△OPF是等腰直角三角形,且OP=PF, 易得△OMP≌△PNF, ∴OM=PN, ∵P(m,m2-4m+3), 则-m2+4m-3=2-m, 解得:m=或, ∴P的坐标为(,)或(,); 如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M, 同理得△ONP≌△PMF, ∴PN=FM, 则-m2+4m-3=m-2, 解得:x=或; P的坐标为(,)或(,); 综上所述,点P的坐标是:(,)或(,)或(,)或(,). 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题. 11.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=. (1)求抛物线的解析式; (2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF; (3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由. 【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】 (1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可; (2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可; (3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可. 【详解】 (1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得, 解得,抛物线的解析式为y=x2﹣3x﹣4; (2)∵平移直线l经过原点O,得到直线m, ∴直线m的解析式为y=x. ∵点P是直线1上任意一点, ∴设P(3a,a),则PC=3a,PB=a. 又∵PE=3PF, ∴. ∴∠FPC=∠EPB. ∵∠CPE+∠EPB=90°, ∴∠FPC+∠CPE=90°, ∴FP⊥PE. (3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a. ∵CF=3BE=18﹣3a, ∴OF=20﹣3a. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去). ∴Q(﹣2,6). 如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6. ∵CF=3BE=3a﹣18, ∴OF=3a﹣20. ∴F(0,20﹣3a). ∵PEQF为矩形, ∴,, ∴Qx+6=0+a,Qy+2=20﹣3a+0, ∴Qx=a﹣6,Qy=18﹣3a. 将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q(2,﹣6). 综上所述,点Q的坐标为(﹣2,6)或(2,﹣6). 【点睛】 本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a的式子表示点Q的坐标是解题的关键. 12.课本中有一道作业题: 有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm? 小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题. (1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算. (2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长. 【答案】(1)mm,mm;(2)PN=60mm,mm. 【解析】 【分析】 (1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm),根据平行得出△APN和△ABC相似,根据线段的比值得出y的值,然后得出边长;(2)、根据第一题同样的方法得出y与x的函数关系式,然后求出S与x的函数关系式,根据二次函数的性质得出最大值. 【详解】 (1)、设PQ=y(mm),则PN=2y(mm),AE=80-y(mm) ∵PN∥BC, ∴=,△APN∽△ABC ∴= ∴= ∴=解得 y= ∴2y= ∴这个矩形零件的两条边长分别为mm,mm (2)、设PQ=x(mm),PN=y(mm),矩形面积为S ,则AE=80-x(mm).. 由(1)知= ∴= ∴ y= 则S=xy=== ∵ ∴ S有最大值 ∴当x=40时,S最大=2400(mm2) 此时,y==60 . ∴面积达到这个最大值时矩形零件的两边PQ、PN长分别是40 mm ,60 mm. 考点:三角形相似的应用 13.如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D. (1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标; (2)当点C在l下方时,求点C与l距离的最大值; (3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离; (4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数. 【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)当b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个. 【解析】 【分析】 (1)求出A、B 的坐标,由AB=8,可求出b的值.从而得到L的解析式,找出L的对称轴与a的交点即可; (2)通过配方,求出L的顶点坐标,由于点C在l下方,则C与l的距离,配方即可得出结论; (3)由題意得y1+y2=2y3,进而有b+x0﹣b=2(﹣x02+bx0)解得x0的值,求出L与x轴右交点为D的坐标,即可得出结论; (4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个. 【详解】 (1)当x=0吋,y=x﹣b=﹣b,∴B (0,﹣b). ∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4,∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2时,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 ); (2)y=﹣(x)2,∴L的顶点C(,). ∵点C在l下方,∴C与l的距离b(b﹣2)2+1≤1,∴点C与l距离的最大值为1; (3)∵y3是y1,y2的平均数,∴y1+y2=2y3,∴b+x0﹣b=2(﹣x02+bx0),解得:x0=0或x0=b. ∵x0≠0,∴x0=b,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得:x1=0,x2=b. ∵b>0,∴右交点D(b,0),∴点(x0,0)与点D间的距离b﹣(b). (4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x,直线解析式a:y=x﹣2019. 联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数; ∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点. ∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个); ②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之 间有1010个偶数,因此“美点”共有1010个. 故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个. 【点睛】 本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键. 14.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 【答案】(1)y=﹣x2+3x+4;(2)t的值为;(3)当△PDM是等腰三角形时,t=1或t=﹣1. 【解析】 【分析】 (1)求直线y=-x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式. (2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值. (3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值. 【详解】 (1)直线y=﹣x+4中,当x=0时,y=4 ∴C(0,4) 当y=﹣x+4=0时,解得:x=4 ∴B(4,0) ∵抛物线y=﹣x2+bx+c经过B,C两点 ∴ 解得: ∴抛物线解析式为y=﹣x2+3x+4 (2)∵B(4,0),C(0,4),∠BOC=90° ∴OB=OC ∴∠OBC=∠OCB=45° ∵ME⊥x轴于点E,PB=t ∴∠BEP=90° ∴Rt△BEP中, ∴, ∴ ∵点M在抛物线上 ∴, ∴ , ∵PN⊥y轴于点N ∴∠PNO=∠NOE=∠PEO=90° ∴四边形ONPE是矩形 ∴ON=PE=t ∴NC=OC﹣ON=4﹣t ∵MP∥CN ∴△MPQ∽△N
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服