资源描述
人教版七年级下册数学期末质量监测试卷(附解析)
一、选择题
1.如图,与是同旁内角,它们是由( )
A.直线,被直线所截形成的
B.直线,被直线所截形成的
C.直线,被直线所截形成的
D.直线,被直线所截形成的
2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )
A. B.
C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中是假命题的是( )
A.对顶角相等
B.8的立方根是±2
C.实数和数轴上的点是一一对应的
D.平行于同一直线的两条直线平行
5.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为( )
A.22° B.22.5° C.30° D.45°
6.下列说法不正确的是( )
A. B.
C.的平方根是 D.的立方根是
7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( )
A.45° B.125°
C.55° D.35°
8.如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、、、…的位置上,则点的坐标为( ).
A. B. C. D.
九、填空题
9.若,则±=_________.
十、填空题
10.已知点P(3,﹣1)关于x轴的对称点Q的坐标是(a+b,1﹣b),则a=___,b=___.
十一、填空题
11.如图,点D是△ABC三边垂直平分线的交点,若∠A=64°,则∠D=_____°.
十二、填空题
12.如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DE∥BC交直线AC于点E,过点E作EF∥AB交直线BC于点F,若∠ABC=50°,则∠DEF的度数___.
十三、填空题
13.如图1是的一张纸条,按图1→图2→图3,把这一纸条先沿折叠并压平,再沿折叠并压平,若图2中,则图3中的度数为_______.
十四、填空题
14.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____.
十五、填空题
15.已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 ____________
十六、填空题
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.
十七、解答题
17.(1)
(2)
(3)
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
二十、解答题
20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,
(1)公交车站的坐标是 ,宠物店的坐标是 ;
(2)在图中标出公园,书店的位置;
(3)将医院的位置怎样平移得到人寿保险公司的位置.
二十一、解答题
21.任意无理数都是由整数部分和小数部分构成的.
已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为.例如:,即,显然的整数部分是2,小数部分是.
根据上面的材料,解决下列问题:
(1)若的整数部分是m,的整数部分是n,求的值.
(2)若的整数部分是,小数部分是y,求的值.
二十二、解答题
22.观察下图,每个小正方形的边长均为1,
(1)图中阴影部分的面积是多少?边长是多少?
(2)估计边长的值在哪两个整数之间.
二十三、解答题
23.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.
(1)如图1,求证:HG⊥HE;
(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;
(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.
二十四、解答题
24.已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且.
(1)将直角如图1位置摆放,如果,则________;
(2)将直角如图2位置摆放,N为上一点,,请写出与之间的等量关系,并说明理由;
(3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点,探究与的数量关系,请直接写出结论.
二十五、解答题
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角.
【详解】
解:与是同旁内角,它们是由直线,被直线所截形成的
故选A.
【点睛】
本题考查了同旁内角的含义,熟练掌握含义是解题的关键.
2.C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
解析:C
【分析】
根据平移的特点即可判断.
【详解】
将图进行平移,得到的图形是
故选C.
【点睛】
此题主要考查平移的特点,解题的关键是熟知平移的定义.
3.B
【分析】
根据平面直角坐标系的四个象限内的坐标特征回答即可.
【详解】
解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,
故选:B.
【点睛】
本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.
4.B
【分析】
根据平行线的判定、对顶角、立方根和实数与数轴关系进行判断即可.
【详解】
解:A、对顶角相等,是真命题;
B、8的立方根是2,原命题是假命题;
C、实数和数轴上的点是一一对应的,是真命题;
D、平行于同一直线的两条直线平行,是真命题;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的判定、对顶角、立方根和实数与数轴,属于基础题,难度不大.
5.B
【分析】
过作,过作,利用平行线的性质解答即可.
【详解】
解:过作,过作,
,
,
,,
,,
,,,
,
.
故选:B.
【点睛】
此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.
6.D
【分析】
利用平方根、算术平方根及立方根的定义分别判断后即可确定正确的选项.
【详解】
解:A、,正确,不符合题意;
B、,正确,不符合题意;
C、0.04的平方根是±0.2,正确,不符合题意;
D、9的立方根是=3,故错误,符合题意;
故选:D.
【点睛】
本题考查了平方根、算术平方根及立方根的定义,属于基础性定义,比较简单.
7.C
【分析】
根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案.
【详解】
解:∵∠ACB=90°,∠2=35°,
∴∠3=180°-90°-35°=55°,
∵a∥b,
∴∠1=∠3=55°.
故选:C.
【点睛】
本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中.
8.D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化
解析:D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位.
九、填空题
9.±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
【点睛】
本题考查了算术平方根的移
解析:±1.01
【分析】
根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.
【详解】
解:∵,
∴,
故答案为±1.01.
【点睛】
本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.
十、填空题
10.0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.
【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解析:0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.
【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解得:a=3,b=0,
故答案为:3,0.
【点睛】
此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.
十一、填空题
11.128°
【解析】
【分析】
由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果
【详解】
∵D为△ABC三边垂直平分线交点,
∴点D为△ABC的
解析:128°
【解析】
【分析】
由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果
【详解】
∵D为△ABC三边垂直平分线交点,
∴点D为△ABC的外心,
∴∠D=2∠A
∵∠A=64°
∴∠D=128°
故∠D的度数为128°
【点睛】
此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答
十二、填空题
12.130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵E
解析:130°.
【分析】
先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.
【详解】
解:∵DE∥BC,
∴∠ABC=∠ADE=50°(两直线平行,同位角相等),
∵EF∥AB,
∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),
∴∠DEF=180°﹣50°=130°.
故答案为:130°.
【点睛】
本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.
十三、填空题
13.15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°
解析:15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°,
∵2∠BFE+∠BFC=180°,
∴∠BFC=180°-2∠BFE=50°,
∴∠CFE=∠BFE-∠BFC=15°,
故答案为:15°.
【点睛】
本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.
十四、填空题
14.﹣2或﹣1或0或1或2.
【分析】
有三种情况:
①当时,[x]=-1,(x)=0,[x)=-1或0,
∴[x]+(x)+[x)=-2或-1;
②当时,[x]=0,(x)=0,[x)=0,
∴[x]
解析:﹣2或﹣1或0或1或2.
【分析】
有三种情况:
①当时,[x]=-1,(x)=0,[x)=-1或0,
∴[x]+(x)+[x)=-2或-1;
②当时,[x]=0,(x)=0,[x)=0,
∴[x]+(x)+[x)=0;
③当时,[x]=0,(x)=1,[x)=0或1,
∴[x]+(x)+[x)=1或2;
综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.
故答案为-2或﹣1或0或1或2.
点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.
【详解】
请在此输入详解!
十五、填空题
15.或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)
解析:或
【分析】
已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标.
【详解】
∵
∴AB=8
∵的面积为
∴=16
∴OC=4
∴点的坐标为(0,4)或(0,-4)
故答案为:(0,4)或(0,-4)
【点睛】
本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.
十六、填空题
16.【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,
解析:
【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,,
∵2021=505×4+1
∴的横坐标为2×505=1010,纵坐标为1
即
故答案为:
【点睛】
本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.
十七、解答题
17.(1);(2);(3)
【分析】
(1)先化简后计算即可;
(2)先化简后计算即可;
(3)首先去括号,然后再合并即可.
【详解】
解:(1)原式
(2)原式
(3)原式
【点睛】
此题主要考查了实
解析:(1);(2);(3)
【分析】
(1)先化简后计算即可;
(2)先化简后计算即可;
(3)首先去括号,然后再合并即可.
【详解】
解:(1)原式
(2)原式
(3)原式
【点睛】
此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
二十、解答题
20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位
【分析】
(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即
解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位
【分析】
(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即可求解;
(2)公园在第二象限内,距离 轴2个单位,距离 轴3个单位;
书店在第一象限内,距离 轴1个单位,距离 轴1个单位;即可解答;
(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.
【详解】
解:(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,故宠物店的坐标是;
(2)∵公园,书店
∴公园在第二象限内,距离 轴2个单位,距离 轴3个单位;
书店在第一象限内,距离 轴1个单位,距离 轴1个单位;
位置如图所示:
(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.
【点睛】
本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.
二十一、解答题
21.(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是
解析:(1)0;(2)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;
(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.
【详解】
解:(1)∵,
∴,
∴的整数部分是3,即m=3,
∵,
∴,
∴的整数部分是2,即n=2,
∴==0;
(2)∵,
∴,
∴的整数部分是10,即2x=10,
∴x=5,
∴的小数部分是=,
即y=,
∴==.
【点睛】
本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间
【分析】
(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可
解析:(1)图中阴影部分的面积17,边长是;(2)边长的值在4与5之间
【分析】
(1)由图形可以得到阴影正方形的面积等于原来大正方形的面积减去周围四个直角三角形的面积,由正方形的面积等于边长乘以边长,可以得到阴影正方形的边长;
(2)根据,可以估算出边长的值在哪两个整数之间.
【详解】
(1)由图可知,图中阴影正方形的面积是:5×5−=17
则阴影正方形的边长为:
答:图中阴影部分的面积17,边长是
(2)∵
所以4<<5
∴边长的值在4与5之间;
【点睛】
本题主要考查了无理数的估算及算术平方根的定义,解题主要利用了勾股定理和正方形的面积求解,有一定的综合性,解题关键是无理数的估算.
二十三、解答题
23.(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
解析:(1)见解析;(2)见解析;(3)40°
【分析】
(1)根据平行线的性质和判定解答即可;
(2)过点H作HP∥AB,根据平行线的性质解答即可;
(3)过点H作HP∥AB,根据平行线的性质解答即可.
【详解】
证明:(1)∵AB∥CD,
∴∠AFE=∠FED,
∵∠AGH=∠FED,
∴∠AFE=∠AGH,
∴EF∥GH,
∴∠FEH+∠H=180°,
∵FE⊥HE,
∴∠FEH=90°,
∴∠H=180°﹣∠FEH=90°,
∴HG⊥HE;
(2)过点M作MQ∥AB,
∵AB∥CD,
∴MQ∥CD,
过点H作HP∥AB,
∵AB∥CD,
∴HP∥CD,
∵GM平分∠HGB,
∴∠BGM=∠HGM=∠BGH,
∵EM平分∠HED,
∴∠HEM=∠DEM=∠HED,
∵MQ∥AB,
∴∠BGM=∠GMQ,
∵MQ∥CD,
∴∠QME=∠MED,
∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,
∵HP∥AB,
∴∠BGH=∠GHP=2∠BGM,
∵HP∥CD,
∴∠PHE=∠HED=2∠MED,
∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),
∴∠GHE=∠2GME;
(3)过点M作MQ∥AB,过点H作HP∥AB,
由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,
由(2)可知:∠BGH=2∠MGH=10x,
∵∠AFE+∠BFE=180°,
∴∠AFE=180°﹣10x,
∵FK平分∠AFE,
∴∠AFK=∠KFE= ∠AFE,
即,
解得:x=5°,
∴∠BGH=10x=50°,
∵HP∥AB,HP∥CD,
∴∠BGH=∠GHP=50°,∠PHE=∠HED,
∵∠GHE=90°,
∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,
∴∠HED=40°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.
二十四、解答题
24.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N
解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析
【分析】
(1)作CP//a,则CP//a//b,根据平行线的性质求解.
(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.
(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.
【详解】
解:(1)如图,作CP//a,
∵a//b,CP//a,
∴CP//a//b,
∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,
∴∠BCP=180°-∠CEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+180°-∠CEF=90°,
∴∠CEF=180°-90°+∠AOG=146°.
(2)∠AOG+∠NEF=90°.理由如下:
如图,作CP//a,则CP//a//b,
∴∠AOG=∠ACP,∠BCP+∠CEF=180°,
∵∠NEF+∠CEF=180°,
∴∠BCP=∠NEF,
∵∠ACP+∠BCP=90°,
∴∠AOG+∠NEF=90°.
(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,
∵∠GOC=∠GOP+∠POQ=135°,
∴∠GOP=135°-∠POQ,
∴∠OPQ=135°-∠POQ+∠PQF.
如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,
∴∠GOP=∠OPN,∠PQF=∠NPQ,
∵∠OPN=∠OPQ+∠QPN,
∴∠GOP=∠OPQ+∠PQF,
∴135°-∠POQ=∠OPQ+∠PQF.
【点睛】
本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.
二十五、解答题
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
展开阅读全文