资源描述
上海民办新竹园中学七年级下册数学期末压轴难题试题及答案解答
一、选择题
1.如图所示,下列四个选项中不正确的是( )
A.与是同旁内角 B.与是内错角
C.与是对顶角 D.与是邻补角
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.若点在第二象限,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )
A.1 B.2 C.3 D.4
5.如图,直线、相交于点,.若,则等于( )
A.70° B.110° C.90° D.120°
6.下列说法正确的是( )
A.一个数的立方根有两个,它们互为相反数
B.负数没有立方根
C.任何一个数都有平方根和立方根
D.任何数的立方根都只有一个
7.如图,直线AB,CD被BC所截,若AB∥CD,∠1=50°,∠2=40°,则∠3等于( )
A.80° B.70° C.90° D.100°
8.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以6个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )
A.(0,2) B.(﹣4,0) C.(0,﹣2) D.(4,0)
二、填空题
9.计算:的结果为_____.
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
11.如图,在中,,,是的角平分线,,垂足为,,则__________.
12.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为_____.
13.如图,在△ABC中,将∠B、∠C按如图所示的方式折叠,点B、C均落于边BC上的点Q处,MN、EF为折痕,若∠A=82°,则∠MQE= _________
14.如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有____个.
15.在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为________.
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
三、解答题
17.计算(1)
(2)
18.(1)已知am=3,an=5,求a3m﹣2n的值.
(2)已知x﹣y=,xy=,求下列各式的值:
①x2y﹣xy2;
②x2+y2.
19.如图,点,分别是、上的点,,.
(1)对说明理由,将下列解题过程补充完整.
解:(已知)
________(________________________)
(已知)
___________(________________________)
(______________________________)
(2)若比大,求的度数.
20.已知:如图,ΔABC的位置如图所示:(每个方格都是边长为个单位长度的正方形,ΔABC的顶点都在格点上),点A,B,C的坐标分别为(−1,0),(5,0),(1,5).
(1)请在图中画出坐标轴,建立直角坐标系;
(2)点P(m,n)是ΔABC内部一点,平移ΔABC,点P随ΔABC一起平移,点A落在A′(0,4),点P落在P′(n,6),求点P的坐标并直接写出平移过程中线段PC扫过的面积.
21.阅读下面的文字,解答问题:是一个无理数,而无理数是无限不循环小数,因此的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为即,所以的整数部分为,将减去其整数部分后,得到的差就是小数部分,于是的小数部分为
(1)求出的整数部分和小数部分;
(2)求出的整数部分和小数部分;
(3)如果的整数部分是,小数部分是,求出的值.
二十二、解答题
22.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形.
(1)大正方形的边长是________;
(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.
二十三、解答题
23.已知,,.
(1)如图1,求证:;
(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.
24.综合与探究(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;
(问题迁移)
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.
①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
25.模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
26.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.
解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .
拓展延伸:
(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 .
(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.
【详解】
A. 与是同旁内角,故该选项正确,不符合题意;
B. 与不是内错角,故该选项不正确,符合题意;
C. 与是对顶角,故该选项正确,不符合题意;
D. 与是邻补角,故该选项正确,不符合题意;
故选B.
【点睛】
本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.
2.C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
解析:C
【分析】
根据平移不改变图形的形状和大小,进而得出答案.
【详解】
解:观察图形可知选项C中的图案通过平移后可以得到.
故选:C.
【点睛】
本题考查了图形的平移,正确掌握平移的性质是解题关键.
3.A
【分析】
首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.
【详解】
解:∵点A(a-1,a)在第二象限,
∴a-1<0,a>0,
∴0<a<1,
∴1-a>0,
∴点B(a,1-a)在第一象限,
故选A.
【点睛】
此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).
4.B
【分析】
①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.
【详解】
解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;
②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;
③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;
④平行于同一直线的两条直线平行,正确.
故选:B.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.
5.B
【分析】
先根据平行线的性质得到,然后根据平角的定义解答即可.
【详解】
解:∵,
∴,
∵,
∴.
故选:B.
【点睛】
本题主要考查了平行线的性质定理和平角的性质,灵活运用平行线的性质成为解答本题的关键.
6.D
【分析】
根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断.
【详解】
A、一个数的立方根只有1个,故本选项错误;
B、负数有立方根,故本选项错误;
C、负数只有立方根,没有平方根,故本选项错误;
D、任何数的立方根都只有一个,故本选项正确.
故选:D.
【点睛】
本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念.
7.C
【分析】
根据AB∥CD判断出∠1=∠C=50°,根据∠3是△ECD的外角,判断出∠3=∠C+∠2,从而求出∠3的度数.
【详解】
解:∵AB∥CD,
∴∠1=∠C=50°,
∵∠3是△ECD的外角,
∴∠3=∠C+∠2,
∴∠3=50°+40°=90°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形的外角性质,灵活运用是解题的关键.
8.A
【分析】
利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍
解析:A
【分析】
利用行程问题中的相遇问题,由于矩形的边长为8和4,物体乙是物体甲的速度的3倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的边长为8和4,因为物体乙是物体甲的速度的3倍,
时间相同,物体甲与物体乙的路程比为1:3,由题意知:
①第一次相遇物体甲与物体乙行的路程和为24×1,
物体甲行的路程为24×=6,物体乙行的路程为24×=18,在DE边相遇;
②第二次相遇物体甲与物体乙行的路程和为24×2,
物体甲行的路程为24×2×=12,物体乙行的路程为24×2×=36,在DC边相遇;
③第三次相遇物体甲与物体乙行的路程和为24×3,
物体甲行的路程为24×3×=18,物体乙行的路程为24×3×=54,在BC边相遇;
④第四次相遇物体甲与物体乙行的路程和为24×4,
物体甲行的路程为24×4×=24,物体乙行的路程为24×4×=72,在A点相遇;
此时甲乙回到原出发点,则每相遇四次,两点回到出发点,
2021÷4=505…1,
故两个物体运动后的第2020次相遇地点的是点A,即物体甲行的路程为24×1×=6,物体乙行的路程为24×1×=18时,达到第2021次相遇,
此时相遇点的坐标为:(0,2),
故选:A.
【点睛】
本题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题.
二、填空题
9.6
【分析】
根据算术平方根的定义即可求解.
【详解】
解:的结果为6.
故答案为6
【点睛】
考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数
解析:6
【分析】
根据算术平方根的定义即可求解.
【详解】
解:的结果为6.
故答案为6
【点睛】
考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
11.【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
解析:【解析】
已知∠C=90°,AD是△ABC的角平分线,DE⊥AB,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.
12.40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
解析:40°
【分析】
利用平行线的性质求出∠3即可解决问题.
【详解】
解:
∵直尺的两边互相平行,
∴∠1=∠3=50°,
∵∠2+∠3=90°,
∴∠2=90°﹣∠3=40°,
故答案为:40°.
【点睛】
本题考查了平行线的性质,直角三角形两锐角互余等知识,解题的关键是灵活运用所学知识解决问题.
13.【分析】
根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.
【详解】
解:∵折叠,
∴,,
∵,
∴,
∴.
故答案是:.
【点睛】
本题考查折叠问题,解题的关键是掌握折叠的性质
解析:
【分析】
根据折叠的性质得到,,再根据的度数即可求出的度数,再根据求解即可.
【详解】
解:∵折叠,
∴,,
∵,
∴,
∴.
故答案是:.
【点睛】
本题考查折叠问题,解题的关键是掌握折叠的性质.
14.3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是
解析:3
【分析】
根据无理数的估算、结合数轴求解即可
【详解】
解:
∴
∴
∴在到4.1之间由2,3,4这三个整数
故答案为:3.
【点睛】
本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键.
15.(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.
【详解】
解:∵,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积
解析:(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.
【详解】
解:∵,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积=×6×4=12,
四边形ABOP的面积=△AOP的面积+△AOB的面积=×3×(-m)+×3×4=6-m,
由题意得,6-m=12,
解得,m=-4,
∴点P的坐标为(-4,1),
故答案为:(-4,1).
【点睛】
本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
三、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
18.(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
解析:(1);(2)①;②
【分析】
(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
(2)①利用提公因式法因式分解解答即可;
②根据完全平方公式计算即可.
【详解】
解:(1),,
;
(2)①,,
;
②,,
.
【点睛】
本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.
19.(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可
解析:(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可;
(2)根据平行线的性质得出∠A+∠AED=180°,∠A=∠BFD,再求出∠AED﹣∠A=40°,即可求出答案.
【详解】
(1)证明:∵DFAC(已知),
∴∠A=∠BFD(两直线平行,同位角相等),
∵∠A=∠FDE(已知),
∴∠FDE=∠BFD(等量代换),
∴DEAB(内错角相等,两直线平行);
故答案为:∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;
(2)解:∵DFAC,
∴∠A=∠BFD,
∵∠AED比∠BFD大40°,
∴∠AED﹣∠BFD=40°,
∴∠AED﹣∠A=40°,
∴∠AED=40°+∠A,
∵DEAB,
∴∠A+∠AED=180°,
∴∠A+40°+∠A=180°,
∴∠A=70°,
∴∠BFD=70°.
【点睛】
本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质
解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.
【分析】
(1)根据点的坐标确定平面直角坐标系即可;
(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质可求得线段PC扫过的面积.
【详解】
解:(1)平面直角坐标系如图所示:
(2)因为点A(−1,0)落在A′(0,4),同时点P(m,n)落在P′(n,6),
∴,解得,
∴点P的坐标为(1,2);
如图,线段PC扫过的面积即为平行四边形PCC′P′的面积,
∴线段PC扫过的面积为.
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21.(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,
解析:(1)2,;(2)2,;(3)
【分析】
(1)仿照题例,可直接求出的整数部分和小数部分;
(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;
(3)根据题例,先确定a、b,再计算a-b即可.
【详解】
解:(1)∵,即.
∴的整数部分为2,的小数部分为;
(2)∵ ,即 ,
∴的整数部分为1,
∴的整数部分为2,
∴小数部分为.
(3)∵,即,
∴的整数部分为2,的整数部分为4,即a=4,
所以的小数部分为,
即b=,
∴.
【点睛】
本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键.
二十二、解答题
22.(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再
解析:(1)4;(2)不能,理由见解析.
【分析】
(1)根据已知正方形的面积求出大正方形的边长即可;
(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.
【详解】
解:(1)两个正方形面积之和为:2×8=16(cm2),
∴拼成的大正方形的面积=16(cm2),
∴大正方形的边长是4cm;
故答案为:4;
(2)设长方形纸片的长为2xcm,宽为xcm,
则2x•x=14,
解得:,
2x=2>4,
∴不存在长宽之比为且面积为的长方形纸片.
【点睛】
本题考查了算术平方根,能够根据题意列出算式是解此题的关键.
二十三、解答题
23.(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的
解析:(1)见解析;(2)
【分析】
(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;
(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案.
【详解】
(1)证明:
;
(2)过点E作,延长DC至Q,过点M作
,,,
AF平分
FH平分
设
,
.
【点睛】
本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.
24.(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠
解析:(1)∠PAF+∠PBN+∠APB=360°;(2)①,见解析;②或
【分析】
(1)作PC∥EF,如图1,由PC∥EF,EF∥MN得到PC∥MN,根据平行线的性质得∠PAF+∠APC=180°,∠PBN+∠CPB=180°,即有∠PAF+∠PBN+∠APB=360°;
(2)①过P作PE∥AD交ON于E,根据平行线的性质,可得到,,于是;
②分两种情况:当P在OB之间时;当P在OA的延长线上时,仿照①的方法即可解答.
【详解】
解:(1)∠PAF+∠PBN+∠APB=360°,理由如下:
作PC∥EF,如图1,
∵PC∥EF,EF∥MN,
∴PC∥MN,
∴∠PAF+∠APC=180°,∠PBN+∠CPB=180°,
∴∠PAF+∠APC+∠PBN+∠CPB=360°,
∴∠PAF+∠PBN+∠APB=360°;
(2)①,
理由如下:如答图,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴
②当P在OB之间时,,理由如下:
如备用图1,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
当P在OA的延长线上时,,理由如下:
如备用图2,过P作PE∥AD交ON于E,
∵AD∥BC,
∴PE∥BC,
∴,,
∴;
综上所述,∠CPD,∠α,∠β之间的数量关系是或.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.
25.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900° , 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C MnO=∠MnOR
∴∠A M1O+∠CMnO=∠M1OR+∠MnOR,
∴∠A M1O+∠CMnO=∠M1OMn=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CMnMn-1=2∠CMnO,
∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
26.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)
解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5
【解析】
试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;
拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;
(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.
试题解析:解:解决问题
连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.
拓展延伸:
解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.
(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文