1、北京市通州区宋庄中学人教版(七年级)初一下册数学期末压轴难题测试题及答案一、选择题1下列事件中,不是必然事件的是( )A同旁内角互补B对顶角相等C等腰三角形是轴对称图形D垂线段最短2下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()ABCD3在平面直角坐标系中,点A(1,2021)在( )A第一象限B第二象限C第三象限D第四象限4下列四个命题:5是25的算术平方根;的平方根是-4;经过直线外一点,有且只有一条直线与这条直线平行;同旁内角互补其中真命题的个数是( )A0个B1个C2个D3个5直线,则( ) A15B25C35D206有个数值转换器,原理如图所示,当输入为27时,输出
2、的值是( )A3BCD327如图,ABCD为一长方形纸片,ABCD,将ABCD沿E折叠,A、D两点分别与A、D对应,若CFE2CFD,则AEF的度数是( )A60B80C75D728如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),按此规律下去,则点A2021的坐标是( )A(673,2021)B(674,2021)C(-673,2021)D(-674,2021)二、填空题9的算术平方根是_10点A(2,4)关于x轴对称的点的坐标是_11已知,射线在同一平面
3、内绕点O旋转,射线分别是和的角平分线则的度数为_12如图,已知AB/EF,B=40,E=30,则C-D的度数为_13将一张长方形纸条ABCD沿EF折叠后,EC交AD于点G,若FGE62,则GFE的度数是_14规定一种关于、的新运算:,那么_15如图,直角坐标系中、两点的坐标分别为,则该坐标系内点的坐标为_16如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是_三、解答题17计算:(1);(2)18求下列各
4、式中的x值(1)x26(2)(2x1)3=419如图,已知:,求证:证明:(已知),_(_)(_),_(等量代换)(_)20已知:如图,把ABC向上平移4个单位长度,再向右平移3个单位长度,得到ABC,(1)画出ABC,写出A、B、C的坐标;(2)点P在y轴上,且SBCP=4SABC,直接写出点P的坐标21数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,
5、”请你解答:已知,其中是一个整数,且,请你求出的值二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分,平分,且,则的
6、大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数24已知射线射线CD,P为一动点,AE平分,CE平分,且AE与CE相交于点E(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P运动到线段AC上时,直接写出的度数;(2)当点P运动到图2的位置时,猜想与之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出与之间的关系,并加以证明25如图,ABC中,ABC的角平分线与ACB的外角ACD的平分线交于A1(1)当A为70时,ACD-ABD=_ACD-ABD=_BA1、CA1是ABC的角平分线与ACB的外角
7、ACD的平分线A1CD-A1BD=(ACD-ABD)A1=_;(2)A1BC的角平分线与A1CD的角平分线交于A2,A2BC与A2CD的平分线交于A3,如此继续下去可得A4、An,请写出A与An的数量关系_;(3)如图2,四边形ABCD中,F为ABC的角平分线及外角DCE的平分线所在的直线构成的角,若A+D=230度,则F=_(4)如图3,若E为BA延长线上一动点,连EC,AEC与ACE的角平分线交于Q,当E滑动时有下面两个结论:Q+A1的值为定值;Q-A1的值为定值其中有且只有一个是正确的,请写出正确的结论,并求出其值26如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(
8、1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值【参考答案】一、选择题1A解析:A【分析】必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答【详解】解:A、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;B、为必然事件,不合题意;C、为必然事件,不合题意;D、为必然事件,不合题意故选A【点睛】本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质必然事件是指在一定条件下,一定发生的事件,即发
9、生的概率是1的事件2D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案【详解】解:A、是由基本图形旋转得到的,故不选B、是轴对称图形,故不选C、是由基本图形旋转得到的,故不选解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案【详解】解:A、是由基本图形旋转得到的,故不选B、是轴对称图形,故不选C、是由基本图形旋转得到的,故不选D、是由基本图形平移得到的,故选此选项综上,本题选择D【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断3D【分析】根据各象限内点的坐标特征解答【详解】解:点A(1,-2021),A点横坐标是正数
10、,纵坐标是负数,A点在第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4C【分析】根据相关概念逐项分析即可【详解】5是25的算术平方根,故原命题是真命题;的平方根是,故原命题是假命题;经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;两直线平行,同旁内角互补,故原命题是假命题;故选:C【点睛】本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键5A【分析】分别过A、B作直线的平
11、行线AD、BC,根据平行线的性质即可完成【详解】分别过A、B作直线AD、BC,如图所示,则ADBCBCCBF=2ADEAD=1=15DAB=EAB-EAD=125-15=110ADBCDAB+ABC=180ABC=180-DAB=180-110=70 CBF=ABF-ABC=85-70=152=15故选:A【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线6B【分析】利用立方根的定义,将x的值代入如图所示的流程,取27的立方根为3,为有理数,再次代入,得,为无理数符合题意,即为y值【详解】根据题意,x=27,取立方根得3,3为有理数,再次取3的立方根,得,为无理数.符合题意,即输出
12、的y值为.故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定.7D【分析】先根据平行线的性质,由ABCD,得到CFE=AEF,再根据翻折的性质可得DFE=EFD,由平角的性质可求得CFD的度数,即可得出答案【详解】解:ABCD,CFE=AEF,又DFE=EFD,CFE=2CFD,DFE=EFD=3CFD,DFE+CFE=3CFD+2CFD=180,CFD=36,AEF=CFE=2CFD=72故选:D【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键8B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解
13、:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可【详解】解:A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),3674-1=2021,n=674,所以A 2021(674,2021)故选B【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n)
14、,A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键二、填空题9【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特
15、点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律1150【分析】分射线OC在AOB的内部和射线OC在AOB的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的解析:50【分析】分射线OC在AOB的内部和射线OC在AOB的外部,分别画出图形,结合根据角平分线定义求解【详解】解:若射线OC在AOB的内部,OE,OF分别是AOC和COB的角平分线,EOC=AOC,FOC=BOC,EOF=E
16、OC+FOC=AOC+BOC=50;若射线OC在AOB的外部,射线OE,OF只有1个在AOB外面,如图,EOF=FOC-COE=BOC-AOC=(BOC-AOC)=AOB=50;射线OE,OF都在AOB外面,如图,EOF=EOC+COF=AOC+BOC=(AOC+BOC)=(360-AOB)=130;综上:EOF的度数为50或130,故答案为:50或130【点睛】本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键注意分类思想的运用1210【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,
17、从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,ABCGDHEF,B=40,E=30,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键1359【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求
18、解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿解析:59【分析】由长方形的性质及折叠的性质可得1=2,ADBC,根据平行线的性质可求解GEC的度数,进而可求解2的度数,再利用平行线的性质可求解【详解】解:如图,长方形ABCD沿EF折叠,1=2,ADBC,FGE+GEC=180,FGE=62,GEC=180-62=118,1=2=GEC=59,ADBC,GFE=2,GFE=59故答案为59【点睛】本题主要考查翻折问题,平行线的性质,求解GEC的度数是解题的关键14【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新
19、定义运算,把新定义运算转换成有理数混合运算是解题关键.解析:【分析】根据新定义,将3与-2代入原式求解即可.【详解】故答案为:【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.15【分析】首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可【详解】解:点C的坐标为(-1,3),故答案为:(-1,3)【点睛】此题主要考查了点的坐标,关键是正解析:【分析】首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可【详解】解:点C的坐标为(-1,3),故答案为:(-1,3)【点睛】此题主要考查了点的坐标,关键是正确建立坐标系16【分析】利用行程问
20、题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,甲走过的路程为,相遇坐标为,第二次相遇又用时间为(秒),甲又走过的路程为,相遇坐标为,第3次相遇时在点A处,则以后3的倍数次相遇都在点A处,第2021次相遇地点与第2次相遇地点的相同,第2021次相遇地点的坐标为故填:【点睛】此题主要考查了点的
21、变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点三、解答题17(1)5;(2)4【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案【详解】(1)原式4+25;(2)原式3()3解析:(1)5;(2)4【分析】(1)直接利用二次根式以及立方根的性质分别化简得出答案;(2)直接去绝对值进而计算得出答案【详解】(1)原式4+25;(2)原式3()3+4【点睛】此题主要考查了实数运算,正确化简各数是解题关键18(1);(2)【分析】(1)根据平方根的定义解答即可;(
22、2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:解析:(1);(2)【分析】(1)根据平方根的定义解答即可;(2)根据立方根的定义解答即可【详解】(1)x26,移项得:,开方得:x,解得:;(2)(2x1)3=4,变形得:(2x1)3=8,开立方得:,2x=1,解得:【点睛】本题考查了立方根及平方根的应用,注意一个正数的平方根有两个,且互为相反数,一个数的立方根只有一个19;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补
23、,两直线平行可得C解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得B=C,再由B+D=180,可得C+D=180,根据同旁内角互补,两直线平行可得CBDE【详解】证明:ABCD,B=C(两直线平行,内错角相等),B+D=180(已知),C+D=180(等量代换),CBDE(同旁内角互补,两直线平行)故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明20(1)作图见解析,A(1,5),B(0,2),C(4,
24、2);(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m解析:(1)作图见解析,A(1,5),B(0,2),C(4,2);(2)P(0,10)或(0,-12)【分析】(1)分别作出A,B,C的对应点A,B,C即可解决问题;(2)设P(0,m),构建方程解决问题即可【详解】解:(1)如图,ABC即为所求,A(1,5),B(0,2),C(4,2); (2)设P(0,m),由题意:4|m+2|=443,解得m=10或-12,P(0,10)或(0,-12)【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟
25、练掌握平移变换的性质2126【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(解析:26【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(-1)2019=27-1=26【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围二十二、解答题22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答
26、即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(
27、m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BMEEN
28、D)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND
29、)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键24(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据
30、角平分线的定义可得,最后根据角的和差即可得;解析:(1);(2),证明见解析;(3),证明见解析【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得;(2)过点作,过点作,先根据(1)可得,再根据(1)同样的方法可得,由此即可得出结论;(3)过点作,过点作,先根据(1)可得,再根据平行线的性质、平行公理推论可得,然后根据角的和差、等量代换即可得出结论【详解】解:(1)如图,过点作,又,且点运动到线段上,平分,平分,;(2)猜想,证明如下:如图,过点作,过点作,由(1)已得:,同理可得:,;(3),证明如
31、下:如图,过点作,过点作,由(1)已得:,即,即,即,即【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键25(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD解析:(1)A;70;35;(2)A=2nAn(3)25(4)Q+A1的值为定值正确,Q+A1=180【分析】(1)根据角平分线的定义可得A1BC=ABC,A1CD=ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得ACD=A+ABC,A1CD=A1BC+A1,整理即可
32、得解;(2)由A1CD=A1+A1BC,ACD=ABC+A,而A1B、A1C分别平分ABC和ACD,得到ACD=2A1CD,ABC=2A1BC,于是有BAC=2A1,同理可得A1=2A2,即A=22A2,因此找出规律;(3)先根据四边形内角和等于360,得出ABC+DCB=360-(+),根据内角与外角的关系和角平分线的定义得出ABC+(180-DCE)=360-(+)=2FBC+(180-2DCF)=180-2(DCF-FBC)=180-2F,从而得出结论;(4)依然要用三角形的外角性质求解,易知2A1=AEC+ACE=2(QEC+QCE),利用三角形内角和定理表示出QEC+QCE,即可得到
33、A1和Q的关系【详解】解:(1)当A为70时,ACD-ABD=A,ACD-ABD=70,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线,A1CD-A1BD=(ACD-ABD)A1=35;故答案为:A,70,35;(2)A1B、A1C分别平分ABC和ACD,ACD=2A1CD,ABC=2A1BC,而A1CD=A1+A1BC,ACD=ABC+BAC,BAC=2A1=80,A1=40,同理可得A1=2A2,即BAC=22A2=80,A2=20,A=2nAn,故答案为:A=2An(3)ABC+DCB=360-(A+D),ABC+(180-DCE)=360-(A+D)=2FBC+(180-
34、2DCF)=180-2(DCF-FBC)=180-2F,360-(+)=180-2F,2F=A+D-180,F=(A+D)-90,A+D=230,F=25;故答案为:25(4)Q+A1的值为定值正确ACD-ABD=BAC,BA1、CA1是ABC的角平分线与ACB的外角ACD的平分线A1=A1CD-A1BD=BAC, AEC+ACE=BAC,EQ、CQ是AEC、ACE的角平分线,QEC+QCE=(AEC+ACE)=BAC,Q=180-(QEC+QCE)=180-BAC,Q+A1=180【点睛】本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要2
35、6(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键