1、人教版中学七7年级下册数学期末解答题难题(附答案)一、解答题1(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由2喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以
2、一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)3如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长4如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由5小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面
3、积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二、解答题6如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由7如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条
4、件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)8已知:直线ABCD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点Q,若H140,求ENQ的度数(可直接运用中的结论)9已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线P
5、HAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点):如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M,A与C的数量关系10点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB/ED,在直线B
6、P,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)三、解答题11如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分,直线、交于点E,则_;(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论12问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重
7、合与相交于点,有一动点在边上运动,连接,记如图2,当点在两点之间运动时,请直接写出与之间的数量关系;如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由13如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由14如图1,E是、之间的一点(1)判定,与之间的数量关系,并证明你的结论;(2)如图2,若、的两条平分线交于
8、点F直接写出与之间的数量关系;(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小15已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若(n为正整数),直接用含n的代数式表示四、解答题16己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中
9、的值是否变化?若不变,求出其值;若变化,求出变化范围.17已知,如图1,直线l2l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3l1,点E在直线l3上,点D的下方(1)l2与l3的位置关系是 ;(2)如图1,若CE平分BCD,且BCD70,则CED ,ADC ;(3)如图2,若CDBD于D,作BCD的角平分线,交BD于F,交AD于G试说明:DGFDFG;(4)如图3,若DBEDEB,点C在射线AM上运动,BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索N:BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比
10、值18(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值19如图,已知直线ab,ABC100,BD平分ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P问1的度数与EPB的度数又怎样的关系?(特殊化)(1)当140,交点P在直线a、直线b之间,求EPB的度数;(
11、2)当170,求EPB的度数;(一般化)(3)当1n,求EPB的度数(直接用含n的代数式表示)20问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、解答题1(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和
12、正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出长和宽之比为的长方形,理由如下:设裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方
13、形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键2(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答【详解】解:(1
14、)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是(2)不同意因为:两个小正方形的面积分别为和,则它们的边长分别为和,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念3(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱
15、长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键4(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根
16、据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积和会利用估算的方法比较无理数的大小5不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长
17、为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二、解答题6(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMH
18、D,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCHAB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BP
19、HDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB120,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平
20、行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点7(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解解析:(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点
21、A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CDE,BE平分ABC,DE平分ADC,BEF=ABE=20,DEF=CDE=40,BED=BEF+DEF=60;(2)同(1)可知:BEF=ABE=n,DEF=CDE=40,BED=BEF+DEF=n+40;(3)当点B在点A左侧时,由(2)可知:BED=n+40;当点B在点A右侧时,如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CD
22、G=ADC=40,ABCDEF,BEF=ABE=n,CDG=DEF=40,BED=BEF-DEF=n-40;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=2n,ADC=80,ABE=ABC=n,CDG=ADC=40,ABCDEF,BEF=180-ABE=180-n,CDE=DEF=40,BED=BEF+DEF=180-n+40=220-n;如图所示,过点E作EFAB,BE平分ABC,DE平分ADC,ABC=n,ADC=70,ABG=ABC=n,CDE=ADC=40,ABCDEF,BEF=ABG=n,CDE=DEF=40,BED=BEF-DEF=n-40;综上所述,BED的
23、度数为n+40或n-40或220-n【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键8(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即解析:(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线性质、邻补
24、角和为180,角与角之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(1)证明:过点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMHGNDGN
25、DDNH180,DNHMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)又AMHHNCMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENH
26、NHT180(两直线平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强9(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360解析:(1)两直线平行
27、,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,依据是平行于同一条直线的两条直线平行;所以C(CPH),所以APC(APH)+(CPH)A+C97故答案为:两直线平
28、行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQHPM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,APM+CQMA+C+PMQ2MPQ+2
29、MQP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键10(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上
30、时,构造平行线,利用平行线的性质求解即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设A
31、BE=EBM=x,CDE=EDM=y,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型三、解答题11(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得M
32、OC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OCF+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=4
33、5+xCOE=MOEMOC=45+x2x=45xOEF=COE+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分AONAOE=135xCOE=90AOE=90(135x)=x45OEF=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便12(1)80;(2);
34、【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;解析:(1)80;(2);【分析】(1)过点P作PGAB,则PGCD,由平行线的性质可得BPC的度数;(2)过点P作FD的平行线,依据平行线的性质可得APE与,之间的数量关系;过P作PQDF,依据平行线的性质可得=QPA,=QPE,即可得到APE=APQ-EPQ=-【详解】解:(1)过点P作PGAB,则PGCD,由平行线的性质可得B+BPG=180,C+CPG=180,又PBA=125,PCD=155,BPC=360-125-155=80,故答案
35、为:80;(2)如图2,过点P作FD的平行线PQ,则DFPQAC,=EPQ,=APQ,APE=EPQ+APQ=+,APE与,之间的数量关系为APE=+;如图3,APE与,之间的数量关系为APE=-;理由:过P作PQDF,DFCG,PQCG,=QPA,=QPE,APE=APQ-EPQ=-【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论13(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)1
36、00;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设
37、直线和直线相交于点,平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质14(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,解析:(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,由(1)的结论得AFDBAFCDF,根据角平分线的定义得到BAFBAE,CDFCDE,则AFD(BAECDE),加上(1)的结论得到AFDAED;(3
38、)由(1)的结论得AGDBAFCDG,利用折叠性质得CDG4CDF,再利用等量代换得到AGD2AEDBAE,加上90AGD1802AED,从而可计算出BAE的度数【详解】解:(1)理由如下:作,如图1,;(2)如图2,由(1)的结论得,、的两条平分线交于点F,;(3)由(1)的结论得,而射线沿翻折交于点G,【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等15(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:
39、(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2),EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算能正确识图,利用角的和差求得相应角的度数是解题关键四、解答题16(1)3; (2)见解析; (3)见解析