资源描述
人教版中学七7年级下册数学期末解答题难题
一、解答题
1.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 .
(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;
(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).
2.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.
3.如图,用两个边长为15的小正方形拼成一个大的正方形,
(1)求大正方形的边长?
(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?
4.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
5.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二、解答题
6.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.
(1)当点H在线段EG上时,如图1
①当∠BEG=时,则∠HFG= .
②猜想并证明:∠BEG与∠HFG之间的数量关系.
(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.
7.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形,,操作发现:
(1)如图1.若,求的度数;
(2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由.
(3)如图3,若∠A=30°,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
8.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.
(1)如图1,求证:;
(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;
9.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
10.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
三、解答题
11.将两块三角板按如图置,其中三角板边,,,.
(1)下列结论:正确的是_______.
①如果,则有;
②;
③如果,则平分.
(2)如果,判断与是否相等,请说明理由.
(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数.
12.问题情境
(1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ;
问题迁移
(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记.
①如图2,当点在两点之间运动时,请直接写出与之间的数量关系;
②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由.
13.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 度;
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
14.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A射线自顺时针旋转至便立即回转,灯B射线自顺时针旋转至便立即回转,两灯不停交叉照射巡视,若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足.假定这一带长江两岸河堤是平行的,即,且
(1)求a、b的值;
(2)若灯B射线先转动45秒,灯A射线才开始转动,当灯B射线第一次到达时运动停止,问A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达之前.若射出的光束交于点C,过C作交于点D,则在转动过程中,与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
15.综合与探究
综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,
操作发现:
(1)如图1.,求的度数;
(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.
实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
四、解答题
16.(生活常识)
射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .
(现象解释)
如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD.
(尝试探究)
如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小.
(深入思考)
如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果)
17.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2.
解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .
拓展延伸:
(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 .
(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .
18.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
19.已知在中,,点在上,边在上,在中,边在直线上,;
(1)如图1,求的度数;
(2)如图2,将沿射线的方向平移,当点在上时,求度数;
(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数.
20.已知,,点为射线上一点.
(1)如图1,写出、、之间的数量关系并证明;
(2)如图2,当点在延长线上时,求证:;
(3)如图3,平分,交于点,交于点,且:,,,求的度数.
【参考答案】
一、解答题
1.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周
解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;
(3)根据图形的平移求解.
【详解】
解:(1)∵正方体有6个面且每个面都相等,
∴正方体的一个面的面积=2 dm2.
∴正方形的棱长=dm;
故答案为: dm ;
(2)甲方案:设正方形的边长为xm,则x2 =121
∴x =11
∴正方形的周长为:4x=44m
乙方案: 设圆的半径rm为,则r2==121
∴r =11
∴圆的周长为:2= 22m
∴ 442222(2-
∵ 4>
∴ 2
∴
∴正方形的周长比圆的周长大
故从节省篱笆费用的角度考虑,选择乙方案建成圆形;
(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则
(11 –y)2=12121
∴11 –y =10
∴ y=
∵ 取整数
∴ y =
答:根据此方案求出小路的宽度为;
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;
2.正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
解析:正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
∴答:正方形纸板的边长是18厘米.
【点评】
本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.
3.(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正
解析:(1)30;(2)不能.
【解析】
【分析】
(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;
(2)先求出长方形的边长,再判断即可.
【详解】
解:(1)∵大正方形的面积是:
∴大正方形的边长是: =30;
(2)设长方形纸片的长为4xcm,宽为3xcm,
则4x•3x=720,
解得:x= ,
4x= = >30,
所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.
故答案为(1)30;(2)不能.
【点睛】
本题考查算术平方根,解题的关键是能根据题意列出算式.
4.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
5.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二、解答题
6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部
【分析】
(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.
(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.
【详解】
解:(1)①∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°,
∵∠BEG=36°,
∴∠HFG=18°.
故答案为:18°.
②结论:2∠BEG+∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°+∠HFG=180°,
∴2∠BEG+∠HFG=90°.
(2)如图2中,结论:2∠BEG-∠HFG=90°.
理由:∵EG平分∠BEF,
∴∠BEG=∠FEG,
∵FH⊥EF,
∴∠EFH=90°,
∵AB∥CD,
∴∠BEF+∠EFG=180°,
∴2∠BEG+90°-∠HFG=180°,
∴2∠BEG-∠HFG=90°.
【点睛】
本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
7.(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°
解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)∵∠1=48°,∠BCA=90°,
∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,
∵a∥b,
∴∠2=∠3=42°;
(2)理由如下:
过点B作BD∥a.如图2所示:
则∠2+∠ABD=180°,
∵a∥b,
∴b∥BD,
∴∠1=∠DBC,
∴∠ABD=∠ABC-∠DBC=60°-∠1,
∴∠2+60°-∠1=180°,
∴∠2-∠1=120°;
(3)∠1=∠2,理由如下:
过点C 作CP∥a,如图3所示:
∵AC平分∠BAM
∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,
又∵a∥b,
∴CP∥b,∠1=∠BAM=60°,
∴∠PCA=∠CAM=30°,
∴∠BCP=∠BCA-∠PCA=90°-30°=60°,
又∵CP∥a,
∴∠2=∠BCP=60°,
∴∠1=∠2.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
8.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:
解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.
【分析】
(1)过点作,根据平行线的性质即可求解;
(2)分两种情况:当点在上,当点在上,再过点作即可求解.
【详解】
(1)证明:如图,过点作,
∴,
∵,
∴.
∴.
∵,
∴,
∴.
(2)补全图形如图2、图3,
猜想:或.
证明:过点作.
∴.
∵,
∴
∴,
∴.
∵平分,
∴.
如图3,当点在上时,
∵平分,
∴,
∵,
∴,
即.
如图2,当点在上时,
∵平分,
∴.
∴.
即.
【点睛】
本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.
9.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠
解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=∠BAP,∠DCK=∠DCP,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】
(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】
考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
三、解答题
11.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断
解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;
(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.
【详解】
解:(1)①∵∠BFD=60°,∠B=45°,
∴∠BAD+∠D=∠BFD+∠B=105°,
∴∠BAD=105°-30°=75°,
∴∠BAD≠∠B,
∴BC和AD不平行,故①错误;
②∵∠BAC+∠DAE=180°,
∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;
③若BC∥AD,
则∠BAD=∠B=45°,
∴∠BAE=45°,
即AB平分∠EAD,故③正确;
故答案为:②③;
(2)相等,理由是:
∵∠CAD=150°,
∴∠BAE=180°-150°=30°,
∴∠BAD=60°,
∵∠BAD+∠D=∠BFD+∠B,
∴∠BFD=60°+30°-45°=45°=∠C;
(3)若AC∥DE,
则∠CAE=∠E=60°,
∴∠EAB=90°-60°=30°;
若BC∥AD,
则∠B=∠BAD=45°,
∴∠EAB=45°;
若BC∥DE,
则∠E=∠AFB=60°,
∴∠EAB=180°-60°-45°=75°;
若AB∥DE,
则∠D=∠DAB=30°,
∴∠EAB=30°+90°=120°;
若AE∥BC,
则∠C=∠CAE=45°,
∴∠EAB=45°+90°=135°;
综上:∠EAB的度数可能为30°或45°或75°或120°或135°.
【点睛】
本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.
12.(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
解析:(1)80;(2)①;②
【分析】
(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;
(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;
②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.
【详解】
解:(1)过点P作PG∥AB,则PG∥CD,
由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,
又∵∠PBA=125°,∠PCD=155°,
∴∠BPC=360°-125°-155°=80°,
故答案为:80;
(2)①如图2,
过点P作FD的平行线PQ,
则DF∥PQ∥AC,
∴∠α=∠EPQ,∠β=∠APQ,
∴∠APE=∠EPQ+∠APQ=∠α+∠β,
∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;
②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:
过P作PQ∥DF,
∵DF∥CG,
∴PQ∥CG,
∴∠β=∠QPA,∠α=∠QPE,
∴∠APE=∠APQ-∠EPQ=∠β-∠α.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
13.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠A
解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠APC即可;
(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【详解】
解:(1)过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
故答案为110°;
(2)∠CPD=∠α+∠β,
理由是:如图3,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)当P在BA延长线时,∠CPD=∠β-∠α,
理由是:如图4,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE =∠β-∠α;
当P在AB延长线时,∠CPD=∠α-∠β,
理由是:如图5,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE -∠CPE =∠α-∠β.
【点睛】
本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.
14.(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解析:(1),;(2)15秒或63秒;(3)不发生变化,
【分析】
(1)利用非负数的性质解决问题即可.
(2)分三种情形,利用平行线的性质构建方程即可解决问题.
(3)由参数表示,即可判断.
【详解】
解:(1)∵,
∴,
,;
(2)设灯转动秒,两灯的光束互相平行,
①当时,
,
解得;
②当时,
,
解得;
③当时,
,
解得,(不合题意)
综上所述,当t=15秒或63秒时,两灯的光束互相平行;
(3)设灯转动时间为秒,
,
,
又,
,
而,
,
,
即.
【点睛】
本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.
15.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠
解析:(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)如图1 ,,
,
,
;
图1
(2)理由如下:如图2. 过点作,
图2
,
,
,
,
,
,
;
(3),
图3
理由如下:如图3,过点作,
平分,
,
,
又,
,
,
,
,
又 ,
,
.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
四、解答题
16.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠
解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a.
【分析】
[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;
[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;
[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.
【详解】
[现象解释]
如图2,
展开阅读全文