资源描述
中考数学压轴题之二次函数(中考题型整理,突破提升)及详细答案
一、二次函数
1.如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。
(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。
【答案】解:(1);(2)存在,P(,);(3)Q点坐标为(0,-)或(0,)或(0,-1)或(0,-3).
【解析】
【分析】
(1)已知点A坐标可确定直线AB的解析式,进一步能求出点B的坐标.点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法可解.
(2)首先由抛物线的解析式求出点C的坐标,在△POB和△POC中,已知的条件是公共边OP,若OB与OC不相等,那么这两个三角形不能构成全等三角形;若OB等于OC,那么还要满足的条件为:∠POC=∠POB,各自去掉一个直角后容易发现,点P正好在第二象限的角平分线上,联立直线y=-x与抛物线的解析式,直接求交点坐标即可,同时还要注意点P在第二象限的限定条件.
(3)分别以A、B、Q为直角顶点,分类进行讨论,找出相关的相似三角形,依据对应线段成比例进行求解即可.
【详解】
解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,
∴y=2x﹣6,
令y=0,解得:x=3,
∴B的坐标是(3,0).
∵A为顶点,
∴设抛物线的解析为y=a(x﹣1)2﹣4,
把B(3,0)代入得:4a﹣4=0,
解得a=1,
∴y=(x﹣1)2﹣4=x2﹣2x﹣3.
(2)存在.
∵OB=OC=3,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC,
此时PO平分第二象限,即PO的解析式为y=﹣x.
设P(m,﹣m),则﹣m=m2﹣2m﹣3,解得m=(m=>0,舍),
∴P(,).
(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,
∴,即=,∴DQ1=,
∴OQ1=,即Q1(0,-);
②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,
∴,即,
∴OQ2=,即Q2(0,);
③如图,当∠AQ3B=90°时,作AE⊥y轴于E,
则△BOQ3∽△Q3EA,
∴,即
∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,
即Q3(0,﹣1),Q4(0,﹣3).
综上,Q点坐标为(0,-)或(0,)或(0,﹣1)或(0,﹣3).
2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
【分析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
3.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.
(1)求抛物线的解析式;
(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;
(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.
【答案】(1) y=-x2+2x+3;(2);(3)t=1,(1+,2)和(1-,2).
【解析】
【分析】
(1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐标,就可以得出直线的解析式,就可以求出B的坐标,在直角三角形AOC中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;
(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;
(3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.
【详解】
(1)当x=0,则y=-x+n=0+n=n,y=ax2+bx+3=3,
∴OC=3=n.
当y=0,
∴-x+3=0,x=3=OB,
∴B(3,0).
在△AOC中,∠AOC=90°,tan∠CAO=,
∴OA=1,
∴A(-1,0).
将A(-1,0),B(3,0)代入y=ax2+bx+3,
得
,
解得:
∴抛物线的解析式:y=-x2+2x+3;
(2) 如图1,
∵P点的横坐标为t 且PQ垂直于x轴 ∴P点的坐标为(t,-t+3),
Q点的坐标为(t,-t2+2t+3).
∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |
∴;
∵d,e是y2-(m+3)y+(5m2-2m+13)=0(m为常数)的两个实数根,
∴△≥0,即△=(m+3)2-4×(5m2-2m+13)≥0
整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,
∴△=0,m=1,
∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2
∴ PQ=PH=2,∴-t+3=2,∴t="1,"
∴此时Q是抛物线的顶点,
延长MP至L,使LP=MP,连接LQ、LH,如图2,
∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,
∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,
∴LH=MH,∴平行四边形LQMH是菱形,
∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,
∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+,x2=1-
综上:t值为1,M点坐标为(1+,2)和(1-,2).
4.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?
【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)或.
【解析】
(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,把点C的坐标代入即可求得a的值;
(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;
(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.
解:(1)由矩形的性质可得点A(1,4),
∵抛物线的顶点为A,
设抛物线的解析式为y=a(x-1)2+4,
代入点C(3, 0),可得a=-1.
∴y=-(x-1)2+4=-x2+2x+3.
(2)∵P(,4),
将代入抛物线的解析式,y=-(x-1)2+4=,
∴M(,),
设直线AC的解析式为,
将A(1,4),C(3,0)代入,得:,
将代入得,
∴N(,),
∴MN ,
∴,
∴当t=2时,△AMC面积的最大值为1.
(3)①如图1,当点H在N点上方时,
∵N(,),P(,4),
∴PN=4—()==CQ,
又∵PN∥CQ,
∴四边形PNCQ为平行四边形,
∴当PQ=CQ时,四边形FECQ为菱形,
PQ2=PD2+DQ2 =,
∴,
整理,得.解得,(舍去);
②如图2当点H在N点下方时,
NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,
NQ2=CQ2,得:.
整理,得..所以,(舍去).
“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.
5.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
【答案】(1)y=﹣x2+2x+3.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(3)y=﹣x+3;P点到直线BC的距离的最大值为,此时点P的坐标为(,).
【解析】
【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;
(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;
②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.
【详解】(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,
得,解得:,
∴抛物线的表达式为y=﹣x2+2x+3;
(2)在图1中,连接PC,交抛物线对称轴l于点E,
∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,
∴抛物线的对称轴为直线x=1,
当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,
∵抛物线的表达式为y=﹣x2+2x+3,
∴点C的坐标为(0,3),点P的坐标为(2,3),
∴点M的坐标为(1,6);
当t≠2时,不存在,理由如下:
若四边形CDPM是平行四边形,则CE=PE,
∵点C的横坐标为0,点E的横坐标为0,
∴点P的横坐标t=1×2﹣0=2,
又∵t≠2,
∴不存在;
(3)①在图2中,过点P作PF∥y轴,交BC于点F.
设直线BC的解析式为y=mx+n(m≠0),
将B(3,0)、C(0,3)代入y=mx+n,
得,解得:,
∴直线BC的解析式为y=﹣x+3,
∵点P的坐标为(t,﹣t2+2t+3),
∴点F的坐标为(t,﹣t+3),
∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,
∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;
②∵﹣<0,
∴当t=时,S取最大值,最大值为.
∵点B的坐标为(3,0),点C的坐标为(0,3),
∴线段BC=,
∴P点到直线BC的距离的最大值为,
此时点P的坐标为(,).
【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.
6.对于二次函数 y=ax2+(b+1)x+(b﹣1),若存在实数 x0,使得当 x=x0,函数 y=x0,则称x0 为该函数的“不变值”.
(1)当 a=1,b=﹣2 时,求该函数的“不变值”;
(2)对任意实数 b,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;
(3)在(2)的条件下,若该图象上 A、B 两点的横坐标是该函数的“不变值”,且 A、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值.
【答案】(1)-1,3;(2)0<a<1;(3)-
【解析】
【分析】
(1)先确定二次函数解析式为y=x2-x-3,根据xo是函数y的一个不动点的定义,把(xo,xo)代入得x02-x0-3=xo,然后解此一元二次方程即可;
(2)根据xo是函数y的一个不动点的定义得到axo2+(b+1)xo+(b-1)=xo,整理得ax02+bxo+(b-1)=0,则根据判别式的意义得到△=b2-4a(b-1)>0,即b2-4ab+4a>0,把b2-4ab+4a看作b的二次函数,由于对任意实数b,b2-4ab+4a>0成立,则(4a)2-4.4a<0,然后解此不等式即可.
(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a,b之间的关系式,整理后在利用基本不等式求解可得.
【详解】
解:(1)当a=1,b=-2时,二次函数解析式为y=x2-x-3,把(xo,xo)代入得x02-x0-3=xo,解得xo=-1或xo=3,所以函数y的不动点为-1和3;
(2)因为y=xo,所以axo2+(b+1)xo+(b-1)=xo,即ax02+bxo+(b-1)=0,
因为函数y恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0,而对任意实数b,b2-4ab+4a>0成立,所以(4a)2-4.4a<0,解得0<a<1.
(3)设A(x1,x1),B(x2,x2),则x1+x2
A,B的中点的坐标为( ),即M( )
A、B两点关于直线y=kx-2a+3对称,
又∵A,B在直线y=x上,
∴k=-1,A,B的中点M在直线y=kx-2a+3上.
∴= -2a+3 得:b=2a2-3a
所以当且仅当a= 时,b有最小值-
【点睛】
本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.
7.如图,在平面直角坐标系中,直线与轴,轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.
(1)求抛物线的解析式;
(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;
(3)当△ADE为等腰三角形时,求t的值;
(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.
【答案】(1)抛物线的解析式为;
(2)t的值为或;
(3)t的值为或或;
(4)符合条件的点F存在,共有两个(4,8),,-8).
【解析】
(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE∽△AOB和△AED∽△AOB即可求出t的值;(3)过E作EH⊥x轴于点H,过D作DM⊥AB于点M即可求出t的值;(4)分当AD为边时,当AD为对角线时符合条件的点F的坐标.
解:(1)A(6,0),B(0,8),依题意知,解得,
∴.
(2)∵ A(6,0),B(0,8),∴OA=6,OB=8,AB=10,∴AD=t,AE=10-2t,
①当△ADE∽△AOB时,,∴,∴;
②当△AED∽△AOB时,,∴,∴;
综上所述,t的值为或.
(3) ①当AD=AE时,t=10-2t,∴;
②当AE=DE时,过E作EH⊥x轴于点H,则AD=2AH,由△AEH∽△ABO得,AH=,∴,∴;
③当AD=DE时,过D作DM⊥AB于点M,则AE=2AM,由△AMD∽△AOB得,AM=,∴,∴;
综上所述,t的值为或或.
(4) ①当AD为边时,则BF∥x轴,∴,求得x=4,∴F(4,8);
②当AD为对角线时,则,∴,解得,∵x﹥0,∴,∴.
综上所述,符合条件的点F存在,共有两个(4,8),,-8).
“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.
8.如图1,在矩形ABCD中,DB=6,AD=3,在Rt△PEF中,∠PEF=90°,EF=3,PF=6,△PEF(点F和点A重合)的边EF和矩形的边AB在同一直线上.现将Rt△PEF从A以每秒1个单位的速度向射线AB方向匀速平移,当点F与点B重合时停止运动,设运动时间为t秒,解答下列问题:
(1)如图1,连接PD,填空:PE= ,∠PFD= 度,四边形PEAD的面积是 ;
(2)如图2,当PF经过点D时,求△PEF运动时间t的值;
(3)在运动的过程中,设△PEF与△ABD重叠部分面积为S,请直接写出S与t的函数关系式及相应的t的取值范围.
【答案】(1)300,;(2);(3)见解析.
【解析】
分析:(1)根据锐角三角形函数可求出角的度数,然后根据勾股定理求出PE的长,再根据梯形的面积公式求解.
(2)当PF经过点D时,PE∥DA,由EF=3,PF=6,可得∠EPD=∠ADF=30°,用三角函数计算可得AF=t=;
(3)根据题意,分三种情况:①当0≤t<时,②≤t<3时,③3≤t≤6时,根据三角形、梯形的面积的求法,求出S与t的函数关系式即可.
详解:(1)∵在Rt△PEF中,∠PEF=90°,EF=3,PF=6
∴sin∠P=
∴∠P=30°
∵PE∥AD
∴∠PAD=300,
根据勾股定理可得PE=3,
所以S四边形PEAD=×(3+3)×3=;
(2)当PF经过点D时,PE∥DA,由EF=3,PF=6,得∠EPF=∠ADF=30°,
在Rt△ADF中,由AD=3,得AF=,所以t= ;
(3)分三种情况讨论:
①当0≤t<时, PF交AD于Q,∵AF=t,AQ=t,∴S=×t×t=;
②当≤t<3时,PF交BD于K,作KH⊥AB于H,∵AF=t,∴BF=3-t,S△ABD=,
∵∠FBK=∠FKB,∴FB=FK=3-t,KH=KF×sin600=,∴S=S△ABD﹣S△FBK =
③当3≤t≤3时,PE与BD交O,PF交BD于K,∵AF=t,∴AE=t-3,BF=3-t,
BE=3-t+3,OE=BE×tan300=,∴S=.
点睛:此题主要考查了几何变换综合题,用到的知识点有直角三角形的性质,三角函数值,三角形的面积,图形的平移等,考查了分析推理能力,分类讨论思想,数形结合思想,要熟练掌握,比较困难.
9.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
【答案】(1) S=﹣2(0<t<5); (2) ;(3)见解析.
【解析】
【分析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
【详解】
解:(1)如图1,∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
∴∠OAB=30°,
∵AB=20,
∴OB=10,AO=10,
由题意得:AP=4t,
∴PQ=2t,AQ=2t,
∴S=S△ABC﹣S△APQ,
=,
= ,
=﹣2t2+100(0<t<5);
(2)如图2,在Rt△APM中,AP=4t,
∵点Q关于O的对称点为M,
∴OM=OQ,
设PM=x,则AM=2x,
∴AP=x=4t,
∴x=,
∴AM=2PM=,
∵AM=AO+OM,
∴=10+10﹣2t,
t=;
答:当t为秒时,点P、M、N在一直线上;
(3)存在,
如图3,∵直线PN平分四边形APMN的面积,
∴S△APN=S△PMN,
过M作MG⊥PN于G,
∴ ,
∴MG=AP,
易得△APH≌△MGH,
∴AH=HM=t,
∵AM=AO+OM,
同理可知:OM=OQ=10﹣2t,
t=10=10﹣2t,
t=.
答:当t为秒时,使得直线PN平分四边形APMN的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
10.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
【答案】(1);(-2,);(1,0);
(2)N点的坐标为(0,),(0,);
(3)E(-1,-)、F(0,)或E(-1,),F(-4,)
【解析】
【分析】
(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可
【详解】
(1)∵,a=,则抛物线的“衍生直线”的解析式为;
联立两解析式求交点,解得或,
∴A(-2,),B(1,0);
(2)如图1,过A作AD⊥y轴于点D,
在中,令y=0可求得x= -3或x=1,
∴C(-3,0),且A(-2,),
∴AC=
由翻折的性质可知AN=AC=,
∵△AMN为该抛物线的“衍生三角形”,
∴N在y轴上,且AD=2,
在Rt△AND中,由勾股定理可得
DN=,
∵OD=,
∴ON=或ON=,
∴N点的坐标为(0,),(0,);
(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,
∴∠ ACK=∠ EFH,
在△ ACK和△ EFH中
∴△ ACK≌△ EFH,
∴FH=CK=1,HE=AK=,
∵抛物线的对称轴为x=-1,
∴ F点的横坐标为0或-2,
∵点F在直线AB上,
∴当F点的横坐标为0时,则F(0,),此时点E在直线AB下方,
∴E到y轴的距离为EH-OF=-=,即E的纵坐标为-,
∴ E(-1,-);
当F点的横坐标为-2时,则F与A重合,不合题意,舍去;
②当AC为平行四边形的对角线时,
∵ C(-3,0),且A(-2,),
∴线段AC的中点坐标为(-2.5, ),
设E(-1,t),F(x,y),
则x-1=2×(-2.5),y+t=,
∴x= -4,y=-t,
-t=-×(-4)+,解得t=,
∴E(-1,),F(-4,);
综上可知存在满足条件的点F,此时E(-1,-)、(0,)或E(-1,),F(-4,)
【点睛】
本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题
11.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).
【解析】
【分析】
(1)求出直线CD的解析式即可解决问题;
(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;
(3)求出落在特殊情形下的a的值即可判断;
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.
【详解】
解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,
∴顶点D(﹣1,4),C(0,3),
∴直线CD的解析式为y=﹣x+3,
∴E(3,0),
∴OE=3,
(2)结论:OE的长与a值无关.
理由:∵y=ax2+2ax﹣3a,
∴C(0,﹣3a),D(﹣1,﹣4a),
∴直线CD的解析式为y=ax﹣3a,
当y=0时,x=3,
∴E(3,0),
∴OE=3,
∴OE的长与a值无关.
(3)当β=45°时,OC=OE=3,
∴﹣3a=3,
∴a=﹣1,
当β=60°时,在Rt△OCE中,OC=OE=3,
∴﹣3a=3,
∴a=﹣,
∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.
∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,
∴∠DPM=∠EPN,
∴△DPM≌△EPN,
∴PM=PN,PM=EN,
∵D(﹣1,﹣4a),E(3,0),
∴EN=4+n=3﹣m,
∴n=﹣m﹣1,
当顶点D在x轴上时,P(1,﹣2),此时m的值1,
∵抛物线的顶点在第二象限,
∴m<1.
∴n=﹣m﹣1(m<1).
故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).
【点睛】
本题是二次函数综合题,考查了二次函数的图象与性质。
12.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【解析】
【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.
【详解】(1)∵点A的坐标为(﹣1,0),
∴OA=1,
∴OC=3OA,
∴点C的坐标为(0,3),
将A、C坐标代入y=ax2﹣2ax+c,得:,
解得:,
∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
所以点G的坐标为(1,4);
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,
过点G′作G′D⊥x轴于点D,设BD′=m,
∵△A′B′G′为等边三角形,
∴G′D=B′D=m,
则点B′的坐标为(m+1,0),点G′的坐标为(1,m),
将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:
,
解得:(舍),,
∴k=1;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),
∴PQ=OA=1,
∵∠AOQ、∠PQN均为钝角,
∴△AOQ≌△PQN,
如图2,延长PQ交直线y=﹣1于点H,
则∠QHN=∠OMQ=90°,
又∵△AOQ≌△PQN,
∴OQ=QN,∠AOQ=∠PQN,
∴∠MOQ=∠HQN,
∴△OQM≌△QNH(AAS),
∴OM=QH,即x=﹣x2+2x+2+1,
解得:x=(负值舍去),
当x=时,HN=QM=﹣x2+2x+2=,点M(,0),
∴点N坐标为(+,﹣1),即(,﹣1);
或(﹣,﹣1),即(1,﹣1);
如图3,
同理可得△OQM≌△PNH,
∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,
解得:x=﹣1(舍)或x=4,
当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,
∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);
综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.
13.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高
展开阅读全文