资源描述
人教版六年级上册数学应用题附答案
1.某工程队修一条长600米长的公路,第一阶段修了全长的,第二阶段修了剩下的,那么还剩下多少米没有完成?
2.我国造出的世界最先进的动车组“复兴号”的行驶速度可达400千米/时,一般直升机的速度是它的,一般直升机的速度是多少?
3.某商店有10t面粉,上午卖出,下午卖出,还剩多少吨面粉?
4.甲乙两地相距100千米,一辆汽车行了全程的,行了多少千米?
5.教材的循环使用可以节约资源,每减少一本新教材的使用,可以减少耗纸约千克。六(1)班有45人,如果每人每学期重复使用8本教材,那么每人每学期可以节约多少千克纸?全班每学期一共可以节约多少千克纸?
6.河口县某小学六年级原有学生238人,后来六年级转来2人,现在六年级人数的正好是五年级现在的人数,现在五年级比六年级少多少人?
7.数学课上小强在方格纸上画了一个长10厘米、宽6厘米的长方形,再把这个长方形的长和宽分别增加。
(1)他通过计算发现:新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。于是小强提出猜想:把任意长方形的长和宽分别增加,会不会也有同样的规律呢?
(2)请你举例验证这个规律。
(3)推想:如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
8.商场购进20箱香蕉,购进橘子的箱数是香蕉箱数的,商场购进了香蕉和橘子一共多少箱?
9.李阿姨自己现榨果汁升来招待客人,每个玻璃杯的容量是200毫升,可以倒满几杯?
10.文具店运来300本数学练习本,运来的英语本是数学练习本的,运来的作文本是英语本的,文具店运来多少本作文本?
11.修路队修一条长90千米的公路,第一周修了全长的,第二周修的比第一周多,第二周修了多少千米?
12.三个同学跳绳。小明跳了180下,小强跳的下数是小明跳的,小亮跳的下数是小强跳的。小亮跳了多少下?
13.一本故事书共240页,晓晓第一周看了全书的,第二周看了剩下的还多10页,这时还剩多少页没看?
14.植树队准备种1200棵树,第一天种了总数的,第二天种的棵数是第一天的,第二天种了多少棵树?
15.果园里有420棵果树,梨树占,桃树的棵数是梨树的,桃树有多少棵?
16.人的血液约占体重的,血液里大约是水。王叔叔的体重是78千克,他的血液里大约含水多少千克?
17.一副围棋39元,一副中国象棋的价格是围棋的,一副陆战棋的价格是中国象棋的,一副陆战棋多少元?
18.爷爷今年70岁,爸爸的年龄是爷爷的,我的年龄恰巧是爸爸的。我今年多少岁?
19.小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的。小明有多少枚邮票?(只列式,不计算。)
20.奶奶买了60米长的彩带,用总长的做了中国结,用总长的做了蝴蝶结,这条彩带一共用了多少米?
21.甲、乙二人同时从A地走向B地,当甲走了全程的时,乙走了全程的;当甲离B地还有时,乙离B地还有50米,A、B两地相距多少米?
22.一批零件,甲独做8天完成,乙独做12天完成。现在由两人合作完成这批零件,中途甲因事请假2天,完成这批零件共用了多少天?
23.甲、乙两站相距不到500千米,A、B两列火车从甲、乙两站相对开出,A车行至210千米处停车,B车行至270千米处停车,这时两车相距的正好是甲、乙两站距离的,甲、乙两站的距离是多少?
24.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?
25.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12个桃子。那么第一天和第二天所吃桃子的总数是多少个?
26.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
27.依依从家去外婆家,第一个小时走了全程的,第二个小时走了剩下路程的,已知第一个小时比第二个小时多走了1050米,依依家与外婆家相距多少千米?
28.幸福里小学上学期六年级女生人数是男生的,下学期转来3名女生,这时女生人数是男生人数的。阳光小学下学期六年级男生比女生多多少人?
29.一份稿件,甲单独打要15分钟完成,乙单独打要10分钟完成,现在甲、乙合打5分钟后,乙有事离开,余下的由甲单独完成,甲打完剩下的稿件需要几分钟?
30.有甲、乙两只水桶,把甲桶里的半桶水倒入乙桶,刚好装了乙桶的,再把乙桶装满水后倒出全桶的后还剩12千克,甲桶可装水多少千克?
31.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了时,防尘口罩刚好完成了。这时,为了提前完成医用口罩的生产任务,改进了生产工艺,效率提高了50%。这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
32.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?
33.学习与思考:问题探究。
如图,已知四边形ABCD,E、F 分别为AD、BC 的中点,连接BE、DF,四边形EBFD 与四边形ABCD 的面积之比是多少?
34.甲、乙两人合作制造完成了一批零件,甲乙两人制造零件个数比是4∶3,其中甲制造完成全部零件的还多6个,那么乙制造了多少个零件?
35.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有40千米。已知货车和客车的速度比是5∶7,甲、乙两地相距多少千米?
36.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李丽多做了.他们两人各做了多少道题?
37.甲、乙两个仓库共同储存一批粮食,甲仓库储存的粮食比这批粮食的多10t,乙仓库储存的粮食比这批粮食的少2t,这批粮食一共有多少吨?
38.将一堆书本计划全部分给甲、乙、丙三个小朋友。原计划甲、乙、丙三人所得书本数之比为5∶4∶3。实际上,甲、乙、丙三人所得书本数之比为7∶6∶5,其中有一位小朋友比原计划少得了3本书。那么这位小朋友是谁?他实际得到书本是多少本?
39.如图,长方形的长AD与宽AB的比为5∶3,E、F为 AB边上的三等分点,某时刻,甲从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动。甲、乙、丙三人的速度比为4∶3∶5,他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?
40.某项工程,甲单独做需要30天完成,乙单独做需要20天完成。现在由甲、乙两队合作,中途甲队退出,余下的工程由乙队又做了5天才完成任务。如果做完这项工程共得工程款9000元,问甲队能得工程款多少元?
41.为了丰富课后服务的活动内容,某校准备开设民乐社团。为了了解学生的喜好情况,学校对部分学生进行了调查,并制作了两个不完整的统计图,请完成以下问题。
(1)这次调查的人数一共有( )人。
(2)请把条形统计图和扇形统计图补充完整。
(3)如果学校有1500人,参加古筝社团有多少人?
42.阳光文具店举行元旦促销活动,A、B、C三种品牌的书包在这次促销活动中共计获得利润1200元。每卖一个书包获得的利润以及销售数量情况如下:
品牌
A
B
C
利润(元/个)
24
15
45
(1)在这次促销活动中B品牌书包一共销售了多少个?
(2)如图是三种品牌书包利润占比统计图,请在图中相应的括号里填上A、B、C。
(3)对于接下来书包的进货,你有什么建议?为什么?
43.李元对自己家的5月份消费支出做了统计,并绘制出条形和扇形统计图。
支出项目
伙食水电
购买衣物
文化教育
其他
合计
金额(元)
2250
900
1350
500
5000
①据相关信息把条形统计图补充完整;
②扇形统计图中甲表示的消费项目是___________,占5月份消费支出的___________%。
③根据图表中的信息,提出一个可以用两步计算来解决的问题,并解答。
44.一张可折叠的圆桌,直径是1.2m,折叠后便成了一个正方形(如图)。
①折叠后的桌面的面积是多少平方米?
②折叠部分是多少平方米?(得数保留两位小数)
45.如图,一个半径为2厘米的小圆片沿着一个正方形外边缘滚动一周,已知正方形边长为10厘米,那么小圆片扫过的面积是多少平方厘米?小圆片圆心滚动一周的轨迹是多少厘米?(π取3.14)
46.下图是学校的运动场。
(1)如果在阴影部分铺塑胶跑道,每平方米100元,则一共花多少钱?
(2)笑笑和淘气分别从A、B出发,沿半圆跑到C、D,笑笑跑内圈,淘气跑外圈,两人跑过的路程差是多少米?
(3)笑笑和淘气同时从内道的相同起点进行同向跑步,淘气的速度是笑笑的120%,从起点出发后淘气第一次追上笑笑需要5分钟,那么笑笑的速度是多少?
47.小明观察到某赛车场赛道和学校操场跑道形状一样,于是测量了相关数据如下:直道的长度85.96m,半圆形跑道的直径72.6m。某型号赛车左、右轮的距离是2m,转弯时,外侧的轮子比内侧的轮子要多行一些路。当该赛车在上述赛道上跑一圈时,外轮比内轮多行多少米?
48.如图,三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小23平方厘米。求BC的长度。
49.如图是圆的面积公式推导图,若剪拼成的近似平行四边形的底是12.56厘米,则这个圆的周长和面积分别是多少?
50.街心公园的中心有一个直径为10米的圆形喷水池,现要在水池的周围新建宽3米的花圃。李叔叔要沿着花圃的外侧另修一圈栅栏,他每分钟可以修2米。
(1)花圃的面积是多少?(如果你觉得有困难,可以先画示意图哦
(2)修完这些栅栏至少需要多少时间?(得数保留整数)
51.某公司计划进一批原材料,原来每吨的价格是200元,现在每吨的价格上涨了25%。原计划进100吨原材料的钱,现在只能进多少吨?
52.根据下列信息回答问题.
印刷厂的纸是以“令”来卖的.一令是500张.最普通的纸张是A4纸.A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分.一张A0纸的规格为1189毫米×841毫米,差不多有1平方米.如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等.
(1)需要多少张A4纸才能覆盖住一张A0纸?( )
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?( )
①420mm ②297mm ③210mm ④149mm
53.按图所示的方式摆放正方形.
(1)摆一个正方形需要4根小棒,摆两个正方形需要 根小棒.
(2)按照如图所示的方式继续摆正方形,摆n个正方形需多少根小棒?
54.探究题。
正方形个数
摆成的图形
小棒根数
1
2
3
…
…
…
n
…
(1)把表格填完整。
(2)如果摆100个正方形,那么需要多少根小棒?
55.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。(如图所示)
(1)填写下列表格。想一想,这些数量之间有什么关系?
大正方形每边的块数
3
黑瓷砖块数
8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
56.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。经过上述操作,纸片在最上面的数字是( )。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
57.下面的算式是按照某种规律排列的∶
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…
(1)第13个算式的得数是多少?
(2)第2019个算式是什么?
58.计算1+3+5+7+9+11+…+17+19=( )。
下面是三位同学的解法:
□小刚:1和19相加,3和17相加……一共有5组这样的加法,因此可以列式20×5计算。
□小红:根据我们学过的“数与形”的方法,这是一列从1到19的奇数列相加,可以用“10的平方”计算。
□小丽:假设这列数是1+2+3+4+5+…+19+20,可以列式(1+20)×20÷2-10×(10+1)计算。
(1)你觉得哪些同学的解法正确,在□里画√。
(2)用你喜欢的方法计算下题,请用递等式写出过程。
3+5+7+9+…+19+21
59.一张桌子坐6人,两张桌子并起来坐10人,三张桌子并起来坐14人……
(1)照这样,18张桌子并成一排可以坐多少人?
(2)五(2)班有46位同学,需要多少张桌子并起来?
60.新华书店搞促销活动,一本《格林童话》降价20%后,现在售价为24元,《格林童话》原来的售价是多少元?
61.某影剧院能容纳600名观众,该剧院有2个大门和4个小门。经测试,1个大门每分钟能安全通过120人,1个小门每分钟能安全通过80人。在紧急情况下,由于拥挤,大、小门通过的人数各下降30%。
(1)在正常情况下,开启所有的门,每分钟能安全通过多少人?
(2)在紧急情况下,如果要在3分钟内安全疏散全部观众,影剧院门的设计符合要求吗?
62.唐僧带着三个徒弟到西天取经,途中八戒摘了一些桃子。他把总数的30%送给了师父,总数的给了悟空和沙僧;最后他数了数剩下的桃子,比给师父的还多7个。贪吃的八戒全留给了自己。请问八戒一共摘了多少个桃子?
63.明明要将一个15GB的影音文件下载到自己的电脑里。他查了一下C盘和E盘的属性,发现以下信息:
C盘总容量59.6GB,已用空间占;
E盘已用空间127.5GB,未用空间占15%。
(1)明明将文件保存到哪个盘里合适?
(2)明明下载时,前4分钟下载20%,照这样的速度,还要几分钟才能下完?
64.幸福小区中心大花坛的占地面积有600平方米,其中30%种上了黄杨树。如果剩余面积按2∶3的比例种上杜鹃花和太阳花,请你算一算,种植杜鹃花的面积是多少平方米?
65.新星希望小学为了建设书香校园,从图书超市购进了科技类丛书400套,比购进的故事类丛书多,购进的连环画册又是购进故事类丛书的75%,学校购进多少套连环画册?
66.一种优良花生仁的出油率约是42%,现在有1000千克的花生仁,能榨出花生油多少千克?
67.小敏坚持每天阅读。有一本书共120页,第一天读了全书的,第二天读了余下的,还剩多少页没读?
68.目前,我国大部分城镇生活垃圾中,厨余垃圾约占。某镇引进厨余垃圾处理设备,集中借助生物技术处理厨余垃圾,其中10%可转化为有机肥料。某镇每天大约产生16.5吨生活垃圾,可以转化出多少吨有机肥料?
69.张叔叔去年参加医疗保险。今年1月,张叔叔生病住院15天,共需医疗费8500元。按照规定,张叔叔本人需要支付多少元医药费?
70.学校买来250本图书,一至四年级分去总数的40%,其余的按3∶2分给五、六年级,六年级分得多少本?
【参考答案】
1.240米
【解析】
第一阶段修了全长的,还剩全长的1-=,根据求一个数的几分之几是多少用600×(1-)=400(米),第二阶段修了剩下的,还剩1-=,求400的即是还没有完成的,用400×(1-)
解析:240米
【解析】
第一阶段修了全长的,还剩全长的1-=,根据求一个数的几分之几是多少用600×(1-)=400(米),第二阶段修了剩下的,还剩1-=,求400的即是还没有完成的,用400×(1-)。据此解答。
方法一:
(米)
答:还剩下240米没有完成。
方法二:
(米)
(米)
(米)
答:还剩下240米没有完成。
【点睛】
解答此题的关键是先求出第一阶段修了后还剩的长度,再根据分数乘法的意义解答。
2.160千米/时
【解析】
一般直升机的速度=动车组“复兴号”的行驶速度×,据此解答。
400×=160(千米/时)
答:一般直升机的速度是160千米/时。
【点睛】
求一个数的几分之几是多少,用分数
解析:160千米/时
【解析】
一般直升机的速度=动车组“复兴号”的行驶速度×,据此解答。
400×=160(千米/时)
答:一般直升机的速度是160千米/时。
【点睛】
求一个数的几分之几是多少,用分数乘法计算。
3.2吨
【解析】
剩下的面粉占总量的,据此求出剩下的面粉数量即可。
=
=2(吨)
答:还剩2吨面粉。
【点睛】
本题考查分数乘法,解答本题的关键是掌握求一个数的几分之几用乘法计算。
解析:2吨
【解析】
剩下的面粉占总量的,据此求出剩下的面粉数量即可。
=
=2(吨)
答:还剩2吨面粉。
【点睛】
本题考查分数乘法,解答本题的关键是掌握求一个数的几分之几用乘法计算。
4.80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,
解析:80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
5.千克;72千克
【解析】
每人每学期节约纸的质量=每减少一本新教材减少的耗纸量×每人每学期重复适用教材的数量;
全班每学期一共节约纸的质量=每人每学期节约纸的质量×班级总人数;据此解答。
(千克)
解析:千克;72千克
【解析】
每人每学期节约纸的质量=每减少一本新教材减少的耗纸量×每人每学期重复适用教材的数量;
全班每学期一共节约纸的质量=每人每学期节约纸的质量×班级总人数;据此解答。
(千克)
(千克)
答:每人每学期可以节约千克纸,全班每学期一共可以节约72千克纸。
【点睛】
掌握分数乘法的计算方法是解答题目的关键。
6.40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(23
解析:40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(238+2)—(238+2)
=240-240
=240—200
=40(人)
答:现在五年级比六年级少40人。
【点睛】
此题考查的是分数乘法的应用,完成本题关键是根据题意求出现在六年级的人数。
7.(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来
解析:(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来的几分之几,新长方形的面积是原来长方形的几分之几。
(2)可以假设一个新的长方形,它的长是6厘米,宽是5厘米,根据(1)的思路,来验证这个猜想的正误即可。
(3)根据(1)和(2)可知,长宽各增加后,面积是原来的(1+)×(1+),那么长宽各增加后,面积是原来的(1+)×(1+)。
(1)10×(1+)÷10
=1+
=
6×(1+)÷6
=1+
=
10×(1+)×6×(1+)÷(10×6)
=60×÷60
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。
(2)令一个长方形的长是6厘米,宽是5厘米,那么有:
6×(1+)÷6
=1+
=
5×(1+)÷5
=1+
=
6×(1+)×5×(1+)÷(6×5)
=30×÷30
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的,那么这个猜想是正确的。
(3)(1+)×(1+)
=×
=
所以,如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
【点睛】
本题考查了长方形面积和分数乘法,掌握面积公式,有一定运算能力是解题的关键。
8.36箱
【解析】
首先根据分数乘法的意义,把香蕉箱数看作单位“1”,用商场购进的香蕉的箱数乘以购进的橘子占的分率,求出购进橘子的箱数是多少;然后用它加上商场购进的香蕉的箱数,求出商场购进了香蕉和橘子
解析:36箱
【解析】
首先根据分数乘法的意义,把香蕉箱数看作单位“1”,用商场购进的香蕉的箱数乘以购进的橘子占的分率,求出购进橘子的箱数是多少;然后用它加上商场购进的香蕉的箱数,求出商场购进了香蕉和橘子一共多少箱即可。
20×+20
=16+20
=36(箱)
答:商场购进了香蕉和橘子一共36箱。
【点睛】
此题主要考查了分数乘法的意义的应用,解答此题的关键是根据分数乘法的意义,求出购进橘子的箱数是多少。
9.7杯
【解析】
升=1400毫升,用果汁的总升数除以每个玻璃杯的容量即可解答。
升=1400毫升
1400÷200=7(杯)
答:可以倒满7杯。
【点睛】
解答本题的关键是先进行单位换算,再看140
解析:7杯
【解析】
升=1400毫升,用果汁的总升数除以每个玻璃杯的容量即可解答。
升=1400毫升
1400÷200=7(杯)
答:可以倒满7杯。
【点睛】
解答本题的关键是先进行单位换算,再看1400毫升里面有多少个200毫升。
10.200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:
解析:200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:文具店运来200本作文本。
【点睛】
本题考查求一个数的几分之几是多少,用乘法计算。
11.25千米
【解析】
把全长90千米看成单位“1”,根据求一个数的几分之几是多少用乘法求出第一周修的长度,再把第一周修的长度看作单位“1”,第二周修的是1+,单位“1”已知用乘法计算即可。
90××(
解析:25千米
【解析】
把全长90千米看成单位“1”,根据求一个数的几分之几是多少用乘法求出第一周修的长度,再把第一周修的长度看作单位“1”,第二周修的是1+,单位“1”已知用乘法计算即可。
90××(1+)
=20×
=25(千米)
答:第二周修了25千米。
【点睛】
此题考查的是分数乘法的应用,解答此题应注意单位“1”的不同。
12.100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答
解析:100下
【解析】
由题意可知“小明跳的个数×=小强跳的个数”,由此求出小强跳的个数,即120×,再根据“小强跳的个数×=小亮跳的个数”,进行解答即可。
180××
=150×
=100(下);
答:小亮跳了100下。
【点睛】
熟练掌握分数乘法的意义(求一个数的几分之几是多少,用“这个数×几分之几”)是解答本题的关键。
13.140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下
解析:140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下页数。
240×=40(页)
240×(1-)×+10
=240××+10
=50+10
=60(页)
240-40-60=140(页)
答:这时还剩140页没看。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
14.600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,
解析:600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
15.40棵
【解析】
将果树总棵数看作单位“1”,果树总棵数×梨树对应分率×桃树对应分率=桃树棵数。
420××=40(棵)
答:桃树有40棵。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
解析:40棵
【解析】
将果树总棵数看作单位“1”,果树总棵数×梨树对应分率×桃树对应分率=桃树棵数。
420××=40(棵)
答:桃树有40棵。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
16.4千克
【解析】
先把体重78千克看成单位“1”,用78千克乘上就是他的血液的质量,再把他的血液的质量看成单位“1”,再用血液的质量乘上就是血液中水的质量。即78××解答即可。解答此题的关键是分清两
解析:4千克
【解析】
先把体重78千克看成单位“1”,用78千克乘上就是他的血液的质量,再把他的血液的质量看成单位“1”,再用血液的质量乘上就是血液中水的质量。即78××解答即可。解答此题的关键是分清两个不同的单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法求解。
78××
=52×
=4(千克)
答:他的血液里大约含水4千克。
17.9元
【解析】
39××=9(元)
答:一副陆战棋9元。
解析:9元
【解析】
39××=9(元)
答:一副陆战棋9元。
18.12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练
解析:12岁
【解析】
根据题意,用爷爷的年龄乘爸爸的年龄占爷爷年龄的分率,求出爸爸的年龄;再乘我的年龄占爸爸年龄的分率,即可解题。
70××
=42×
=12(岁)
答:我今年是12岁。
【点睛】
熟练掌握求一个数的几分之几是多少的解题方法,是解答此题的关键。
19.36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用
解析:36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用分数连乘计算。
20.57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米
解析:57米
【解析】
根据题意,把彩带的总长看作单位“1”,用总长的做了中国结,用总长的做了蝴蝶结,根据分数乘法的意义,分别用彩带的总长乘、,求出中国结、蝴蝶结用的米数,最后相加,就是这条彩带一共用的米数。
60×+60×
=12+45
=57(米)
答:这条彩带一共用了57米。
【点睛】
明确求一个数的几分之几是多少,用乘法计算。
21.米
【解析】
相同时间内:甲乙的速度比就是∶=25∶21;
乙的速度就是甲的,相同时间内,已走的路程就是甲的。
1-=
×=
50÷(1-)
=50÷
=(米)
答:A、B两地相距米。
解析:米
【解析】
相同时间内:甲乙的速度比就是∶=25∶21;
乙的速度就是甲的,相同时间内,已走的路程就是甲的。
1-=
×=
50÷(1-)
=50÷
=(米)
答:A、B两地相距米。
22.6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几
解析:6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几=1-乙每天完成这批零件的几分之几×途中甲请假的天数,甲、乙两人合作每天完成这批零件的几分之几=甲每天完成这批零件的几分之几+乙每天完成这批零件的几分之几,据此代入数据作答即可。
(天)
答:完成这批零件共用了6天。
23.千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+
解析:千米
【解析】
①如果两车未相遇,则甲乙两站之间的距离是:
(210+270)÷(1﹣)
=480
=540(千米)
超过500千米,不合题意
②如果两车相遇过,则甲乙两站之间的距离是:
(210+270)÷(1+ )
=480
=432(千米)
不超过 500 千米,满足题意
答:甲乙两站之间的距离是432千米。
24.上层200本,下层250本
【解析】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+)x=(450﹣x)×(1+)
x=(450﹣x)×
x=585﹣x
x=585
x=200
解析:上层200本,下层250本
【解析】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+)x=(450﹣x)×(1+)
x=(450﹣x)×
x=585﹣x
x=585
x=200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
25.24个
【解析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率
解析:24个
【解析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率=第二天吃的个数,第一天吃的个数+第二天吃的个数即可。
12÷(1-)÷(1-)÷(1-)÷(1-)÷(1-)÷(1-)
=12÷÷÷÷÷÷
=84(个)
84×=12(个)
(84-12)×
=72×
=12(个)
12+12=24(个)
答:第一天和第二天所吃桃子的总数是24个。
【点睛】
关键是理解分数乘除法的意义,求整体用除法,求部分用乘法。
26.50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,
解析:50000个
【解析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。
(个)
答:这份稿件一共有50000个字。
【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。
27.8千米
【解析】
第二个小时走了剩下路程的,也就是的 ,求出第一个小时比第二个小时多走了1050米相当于是全程的,量率对应求出依依家与外婆家的距离。
(米)
4800米=4.8千米
答:依
解析:8千米
【解析】
第二个小时走了剩下路程的,也就是的 ,求出第一个小时比第二个小时多走了1050米相当于是全程的,量率对应求出依依家与外婆家的距离。
(米)
4800米=4.8千米
答:依依家与外婆家相距4.8千米。
【点睛】
本题考查的是分数除法应用题,一个量除以其所占单位“1”的分率,求得单位“1”是多少。
28.18人
【解析】
男生人数不变,则转来的3名女生占男生的,据此求出六年级男生人数,再根据下学期男生比女生多的人数占男生人数的七分之一,求出多的人数即可。
=3÷
=126(人)
126
=
=18
解析:18人
【解析】
男生人数不变,则转来的3名女生占男生的,据此求出六年级男生人数,再根据下学期男生比女生多的人数占男生人数的七分之一,求出多的人数即可。
=3÷
=126(人)
126
=
=18(人)
答:阳光小学下学期六年级男生比女生多18人。
【点睛】
本题考查分数乘除法,解答本题的关键是理解转来的3名女生占男生人数的几分之几。
29.分钟
【解析】
解析:分钟
【解析】
30.20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可
解析:20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可装水多少千克即可。
乙桶能装水:
12÷(1-)
=12÷
=15(千克)
甲桶能装水的质量:
15×(÷)
=15×
=20(千克)
答:甲桶可装水20千克。
【点睛】
解答此题的关键是弄清甲桶的容量是乙桶的。
31.24500个
【解析】
根据题目可知,当医用口罩完成了时,防尘口罩刚好完成了,此时两种口罩生产的时间是相同的,根据效率比等于完成的量的比,即生产医用口罩的效率∶生产防尘口罩的效率=∶=14∶15,即
解析:24500个
展开阅读全文