资源描述
人教版六年级上册数学应用题附答案
1.六年级三个班学生共同植树,一班植树160棵,二班植树的棵树是一班的,三班植树的棵树是二班的,三班植树多少棵?
2.六年级举行“用圆设计图案”比赛,六(1)班同学上交了24件作品,六(2)班比六(1)班多交了,两个班一共上交了多少件作品?
3.六年级共有学生240人,其中六(1)班人数占,六(2)班人数占,这两个班哪个班的人数多?多多少人?
4.修一条路全长200米,第一天修了全长的,第二天比第一天修的还多米,第二天修了多少米?
5.水果店运来210筐水果,第一天卖出总数的,第二天卖出余下的。水果店里还剩下多少筐水果?
6.一共有600棵树。如果我们一队单独种,需要10天。如果我们二队单独种,需要8天。现在两队合种,5天能种完吗?
7.数学课上小强在方格纸上画了一个长10厘米、宽6厘米的长方形,再把这个长方形的长和宽分别增加。
(1)他通过计算发现:新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。于是小强提出猜想:把任意长方形的长和宽分别增加,会不会也有同样的规律呢?
(2)请你举例验证这个规律。
(3)推想:如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
8.一本《十万个为什么》有180页,明明第一天看了总页数的,第二天看的页数是第一天的,明明第二天看了多少页?
9.我国造出的世界最先进的动车组“复兴号”的行驶速度可达400千米/时,一般直升机的速度是它的,一般直升机的速度是多少?
10.文具店运来300本数学练习本,运来的英语本是数学练习本的,运来的作文本是英语本的,文具店运来多少本作文本?
11.修路队修一条长90千米的公路,第一周修了全长的,第二周修的比第一周多,第二周修了多少千米?
12.一本故事书共240页,晓晓第一周看了全书的,第二周看了剩下的还多10页,这时还剩多少页没看?
13.公园里有桂花树300棵,柳树是桂花树的,榕树是柳树的。榕树有多少棵?
14.只列综合算式或方程,不解答。
一个蔬菜大棚共480平方米,其中一半种各种萝卜,已知红萝卜地的面积占整块萝卜地的。红萝卜地有多少平方米?
15.一副围棋39元,一副中国象棋的价格是围棋的,一副陆战棋的价格是中国象棋的,一副陆战棋多少元?
16.三个同学踢毽子,玲玲踢了72个,小洋踢的个数是玲玲的,小梅踢的个数是小洋的,小梅踢了多少个?
17.学校花坛中有24盆红花,黄花是红花的,紫花是黄花的,紫花有多少盆?
18.小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的。小明有多少枚邮票?(只列式,不计算。)
19.某小学举行“我为小伙伴”捐书活动,四年级学生捐书1200本,六年级捐书数是四年级的,五年级的捐书数是六年级的,五年级捐书多少本?
20.学校组织同学们参加兴趣小组活动,参加绘画组的共90人,参加文艺组的同学是绘画组的,参加书法组的同学是绘画组的,参加书法组的有多少人?
21.甲、乙二人同时从A地走向B地,当甲走了全程的时,乙走了全程的;当甲离B地还有时,乙离B地还有50米,A、B两地相距多少米?
22.一批零件,甲独做8天完成,乙独做12天完成。现在由两人合作完成这批零件,中途甲因事请假2天,完成这批零件共用了多少天?
23.当你开车开到路程时,你油箱的油已由原来的满箱到只有箱。问:是否能用这些油到达终点?请你尝试说说理由。
24.甲、乙两车分别从A、B两地同时开出,相对而行,9小时后相遇,然后又各自向前行驶了4小时,这时甲车距B城还有224千米,乙车距A城还有336千米。求A、B两地相距多少千米?
25.操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,这时女生人数占,后来又来了几名女生?
26.快车从甲地到乙地要行10小时,慢车从乙地到甲地要行15小时。两车同时从甲、乙两地出发,相向而行,4小时后两车还相距200km。甲、乙两地相距多少千米?
27.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?
28.甲乙两车分别从A、B两地相向而行,甲车行驶了1.5小时乙车才开始出发,乙车以80千米/时的速度行2.5小时与甲车相遇。甲车中途休息了1小时,当两车相遇时,甲所行驶的路程占AB两地总路程的,甲车的行驶速度是多少千米?
29.一份稿件,甲单独打要15分钟完成,乙单独打要10分钟完成,现在甲、乙合打5分钟后,乙有事离开,余下的由甲单独完成,甲打完剩下的稿件需要几分钟?
30.有甲、乙两只水桶,把甲桶里的半桶水倒入乙桶,刚好装了乙桶的,再把乙桶装满水后倒出全桶的后还剩12千克,甲桶可装水多少千克?
31.仙居目前的居民用电电价是0.55元/千瓦时。为了倡导建设“节约型社会”,鼓励市民安装分时电表实行峰谷时谷电价,具体收费标准如下:
时段
峰时(8:00~22:00)
谷时(22:00~次日8:00)
每千瓦时电价(元)
0.63
0.43
孔强家一年用电4800千瓦时,其中峰时用电量与谷时用电量的比是,如果孔强家安装分时电表,一年能节约多少钱?
32.甲乙两车同时从A、B两地相向而行,在离中点60千米处相遇。已知甲、乙两车的速度比是5:7,A、B两地相距多少千米?
33.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?
34.甲箱子有50个球,乙箱子有15个球,从甲箱拿出多少个球放入乙箱里才使得甲、乙两箱球的数量比是?
35.甲乙两城相距450千米,两辆汽车同时从甲乙两城相对开出,3小时后相遇,已知快车与慢车的速度比是,那么快车比慢车总共多行驶了多少千米?
36.某商场需要制作一块广告牌,请来师徒两位工人。已知师傅单独完成需8天,徒弟单独完成需12天,现由师傅先做3天,再由两人合作。
(1)还需要几天才能完成任务?
(2)完成后两人共得工钱1600元,如果按两人完成的工作量分配工钱,那么师徒两人各应得工钱多少元?
37.客车和货车同时从甲、乙两地的中间向相反的方向行驶,3小时后,客车到达甲地,货车离乙地还有40千米。已知货车和客车的速度比是5∶7,甲、乙两地相距多少千米?
38.苍中七年级学生分三组参加植树,第一组与第二组的人数比是5∶4,第二组与第三组的人数比是3∶2,第一组人数比第二组与第三组人数的总和少20人,七年级参加植树的共有多少人?
39.妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?
40.
如果成套买,可以买几套运动服?
41.如图是某年级学生参加社团情况的两张统计图(不完整),请结合图中的信息解决问题:
(1)这个年级参加乐器社团的有多少人?
(2)这个年级参加舞蹈社团的人数比参加书法社团的人数多百分之几?
(3)请你提出一个数学问题,并解答。
42.下图是朝阳小学六年级的学生周末活动情况统计图:
(1)参加特长班学习的同学和读书的同学占总数的百分之几?
(2)如果参加户外活动的有44人,上网学习的有多少?
43.读图填空。
(1)科技书占图书总数的( )%。
(2)六年级5班文艺书、连环画、故事书三种书的数量的最简整数比是( )∶( )∶( )。
(3)如果六年级5班共有图书400本,那么班里的动漫书比连环画少几本?
44.下图是李大叔种植各种蔬菜面积的扇形统计图。
(1)填写扇形统计图中的百分比。
(2)已知茄子的种植面积是175m2,青椒的种植面积是( )m2。
(3)在扇形统计图中,表示茄子的圆心角是( )。
45.阳光文具店举行元旦促销活动,A、B、C三种品牌的书包在这次促销活动中共计获得利润1200元。每卖一个书包获得的利润以及销售数量情况如下:
品牌
A
B
C
利润(元/个)
24
15
45
(1)在这次促销活动中B品牌书包一共销售了多少个?
(2)如图是三种品牌书包利润占比统计图,请在图中相应的括号里填上A、B、C。
(3)对于接下来书包的进货,你有什么建议?为什么?
46.下图是希望小学六年级全体学生综合素质评价等级统计图。
(1)这是( )统计图。
(2)等级A占全年级人数的( )%,等级C占全年级人数的( )%。
(3)如果六年级共300人,等级B比等级C少多少人?
47.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。小圆的半径是,大圆的半径是。
(1)当小圆从大圆上的点出发,沿着大圆滚动,第一次回到点时,小圆的圆心走过路线的长度是多少厘米?
(2)小圆未滚动时,小圆上的点与大圆上的点重合,从小圆滚动后开始计算,当点第10次与大圆接触时,点更接近大圆上的点( )。(括号里填、、或。)
48.一块正方形的草地,边长4米,一对角线的两个顶点各有一颗树,树上各栓着一只羊,栓羊的绳子长都是4米,两只羊都能吃到草的草地的面积是多少平方米?
49.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
50.如图,一个门洞(图中阴影部分),由一个半圆形和一个长方形组成,它的顶部和左右两边贴有装饰花边(图中空白部分)。
(1)装饰花边一共长多少米?(花边的宽度忽略不计)
(2)这个门洞的面积是多少平方米?
51.明明要将一个15GB的影音文件下载到自己的电脑里。他查了一下C盘和E盘的属性,发现以下信息:
C盘总容量59.6GB,已用空间占;
E盘已用空间127.5GB,未用空间占15%。
(1)明明将文件保存到哪个盘里合适?
(2)明明下载时,前4分钟下载20%,照这样的速度,还要几分钟才能下完?
52.摆一摆,找规律.
摆第n个图形需要用多少根火柴棒?
53.探索规律.
用小棒按照如图方式摆图形.
(1)摆1个八边形需要 根小棒,摆2个需要 根小棒,摆3个需要 根小棒.
(2)照这样摆下去:
①摆n个八边形需要多少根小棒?n=1000呢?
②64根小棒可以摆多少个八边形?
54.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。
(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
55.按照下图方式摆放餐桌和椅子。
照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解)
56.想一想,画一画,这样的4张桌子连在一起共可以坐多少人?n张呢?
57.在数学学习中,我们常常用“数形结合”的方法将复杂的问题简单化,抽象问题具体化。
(1)我们在探究分数乘法的算理和算法时就运用了这一思想方法,请画图解释的算理。
(2)玲玲在解决“12+12+22+32+52+82+132+212+342+…”这个问题时,想到了用数形结合的办法来探索,于是她以这组数中各个数作为正方形的边长构造正方形,再拼成如下面所示的长方形来研究。
序号
1
2
3
4
……
图形
……
算式
12+12
12+12+22
12+12+22+32
……
①你根据前面的规律,把序号4的图形与算式补充完整。
②观察上面的图形和算式,你能把下面的算式补充完整吗?
12+12=1×2
12+12+22=2×3
12+12+22+32=3×5
12+12+22+32+52=( )×( )
12+12+22+32+52+82+132=( )×( )
③若按此规律继续拼长方形,有一个长方形的面积是1870,它表示的算式是( )。
58.通过计算并观察①②③小题,猜想出④的结果,写出你的发现,并用图形进行说明。
①
②+
③…
则:④
发现:____________________________________________________
说明:
59.根据下列信息回答问题.
印刷厂的纸是以“令”来卖的.一令是500张.最普通的纸张是A4纸.A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分.一张A0纸的规格为1189毫米×841毫米,差不多有1平方米.如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等.
(1)需要多少张A4纸才能覆盖住一张A0纸?( )
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?( )
①420mm ②297mm ③210mm ④149mm
60.《道路交通安全法》实施条例规定:所有道路超速50%以上,扣12分;高速公路、城市快速路超速20%以上、50%以下,扣6分;高速公路、城市快速路超速20%以下,扣3分。王叔叔以90千米/时的速度在高速公路上行驶,前方出现限速80千米的标志。如果他保持这个速度继续行驶,将受到扣几分的处罚?
61.一件衣服按目前的定价出售可以盈利30%,如果降价80元之后再出售则能盈利10%,这件衣服的进价是多少元?
62.刘师傅加工一批零件,前3天正好加工了这批零件的60%,第四天又加工了150个,这时已经加工的数量与未加工数量的比是4∶1,这批零件还剩下多少个没有加工?
63.幸福小区中心大花坛的占地面积有600平方米,其中30%种上了黄杨树。如果剩余面积按2∶3的比例种上杜鹃花和太阳花,请你算一算,种植杜鹃花的面积是多少平方米?
64.甲、乙两车同时从A、B两地相向而行,甲车行了全程的,乙车行的与全程的比是,此时甲车比乙车正好多行5千米,A、B两地相距多少千米?
65.一列火车的速度是180千米时,是一架喷气式飞机的。一辆小汽车的速度是这架喷气式飞机的。这辆小汽车的速度是多少?
66.一台笔记本电脑原价7800元,在商场“店庆促销”活动中,这台电脑降价,降价后这台电脑的售价是多少元。
67.某工厂有三个车间,已知第一车间有30人,并且人数最多,以下三个关于车间人数的信息只有一个是准确的。
A.第一车间的人数占三个车间总人数的。
B.第一车间的人数比三个车间总人数的少2。
C.第一车间、第二车间、第三车间人数的比是。
(1)以上三个信息中准确的信息是( )(填序号)。
(2)根据这个信息算一算,这个工厂三个车间共有多少人?
68.五一期间,红星商场搞促销活动。一种空调的打折活动如下图。这种空调降价了百分之几?
69.工程队修一条公路,第一天修了全长的,第二天修了全长的40%,还剩240m没修,这条公路一共有多少米?
70.新华书店搞促销活动,一本《格林童话》降价20%后,现在售价为24元,《格林童话》原来的售价是多少元?
【参考答案】
1.120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答
解析:120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答即可。
160××=120(棵)
答:三班植树120棵。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.52件
【解析】
先用24乘(1+),求出六(2)班上交了多少件作品,再利用加法求出两个班一共上交了多少件作品。
24×(1+)+24
=24×+24
=28+24
=52(件)
答:两个班一共上交
解析:52件
【解析】
先用24乘(1+),求出六(2)班上交了多少件作品,再利用加法求出两个班一共上交了多少件作品。
24×(1+)+24
=24×+24
=28+24
=52(件)
答:两个班一共上交了52件作品。
【点睛】
本题考查了分数乘法的应用,求比一个数多几分之几的数是多少,用乘法。
3.六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:2
解析:六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:240×=40(人)
因为48人>40人,所以六(1)班的人数多。
48-40=8(人)
答:六(1)班的人数多,多8人。
【点睛】
利用分数乘法求出两班的人数是解答题目的关键。
4.米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=
解析:米
【解析】
先计算出第一天修的长度,第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+米,据此解答。
第一天修的长度:200×=80(米)
第二天修的长度:80×+
=50+
=(米)
答:第二天修了米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
5.40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1-
解析:40筐
【解析】
用1减去,再将差乘,求出第二天卖出的占总数的几分之几。据此,再利用减法求出剩下的水果占总数的几分之几,最后将其乘210,求出水果店里还剩下多少筐水果。
(1-)×
=×
=
(1--)×210
=×210
=40(筐)
答:水果店里还剩下40筐水果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
6.能
【解析】
首先根据工作效率=工作量÷工作时间,分别用1除以两队独立完成的时间,求出他们的工作效率;然后再求出他们的工作效率之和,乘以5,和1比较大小即可。
(+)×5
=×5
=
因为>1
答:
解析:能
【解析】
首先根据工作效率=工作量÷工作时间,分别用1除以两队独立完成的时间,求出他们的工作效率;然后再求出他们的工作效率之和,乘以5,和1比较大小即可。
(+)×5
=×5
=
因为>1
答:5天能种完。
【点睛】
此题主要考查了工程问题的应用,解答此题要注意把握住基本关系,即:工作量=工作效率×工作时间,工作效率=工作量÷工作时间,工作时间=工作量÷工作效率。
7.(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来
解析:(1);;
(2)见详解;
(3)
【解析】
(1)将长增加,用长乘(1+)即可。同理,可以求出宽增加是宽乘(1+)。据此,求出变化后的长和宽,以及面积,再利用除法求出新长方形的长和宽分别相当于原来的几分之几,新长方形的面积是原来长方形的几分之几。
(2)可以假设一个新的长方形,它的长是6厘米,宽是5厘米,根据(1)的思路,来验证这个猜想的正误即可。
(3)根据(1)和(2)可知,长宽各增加后,面积是原来的(1+)×(1+),那么长宽各增加后,面积是原来的(1+)×(1+)。
(1)10×(1+)÷10
=1+
=
6×(1+)÷6
=1+
=
10×(1+)×6×(1+)÷(10×6)
=60×÷60
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的。
(2)令一个长方形的长是6厘米,宽是5厘米,那么有:
6×(1+)÷6
=1+
=
5×(1+)÷5
=1+
=
6×(1+)×5×(1+)÷(6×5)
=30×÷30
=
所以,新长方形的长和宽分别相当于原来的,新长方形的面积是原来长方形的,那么这个猜想是正确的。
(3)(1+)×(1+)
=×
=
所以,如果把一个长方形的长和宽分别增加,新长方形的面积是原来的。
【点睛】
本题考查了长方形面积和分数乘法,掌握面积公式,有一定运算能力是解题的关键。
8.20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出
解析:20页
【解析】
明明第一天看了总页数的,把总页数看作单位“1”,单位“1”已知,用乘法计算出第一天看了的页数,第二天看的页数是第一天的,把第一天看的页数看作单位“1”,单位“1”已知,用乘法计算出第二天看了的页数。
(页)
答:明明第二天看了20页。
【点睛】
此题的解题关键是根据题意,找到其中的单位“1”,利用它们之间的数量关系,列式求出答案。
9.160千米/时
【解析】
一般直升机的速度=动车组“复兴号”的行驶速度×,据此解答。
400×=160(千米/时)
答:一般直升机的速度是160千米/时。
【点睛】
求一个数的几分之几是多少,用分数
解析:160千米/时
【解析】
一般直升机的速度=动车组“复兴号”的行驶速度×,据此解答。
400×=160(千米/时)
答:一般直升机的速度是160千米/时。
【点睛】
求一个数的几分之几是多少,用分数乘法计算。
10.200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:
解析:200本
【解析】
先把数学练习本的数量看作单位“1”,用300×求得英语本的数量,再把的英语本数量看作单位“1”,用240×求得作文本的数量。
300×=240(本)
240×=200(本)
答:文具店运来200本作文本。
【点睛】
本题考查求一个数的几分之几是多少,用乘法计算。
11.25千米
【解析】
把全长90千米看成单位“1”,根据求一个数的几分之几是多少用乘法求出第一周修的长度,再把第一周修的长度看作单位“1”,第二周修的是1+,单位“1”已知用乘法计算即可。
90××(
解析:25千米
【解析】
把全长90千米看成单位“1”,根据求一个数的几分之几是多少用乘法求出第一周修的长度,再把第一周修的长度看作单位“1”,第二周修的是1+,单位“1”已知用乘法计算即可。
90××(1+)
=20×
=25(千米)
答:第二周修了25千米。
【点睛】
此题考查的是分数乘法的应用,解答此题应注意单位“1”的不同。
12.140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下
解析:140页
【解析】
将全书页数看作单位“1”,全书页数×第一周看的对应分率=第一周看的页数;第一周剩下页数×第二周看的对应分率+10页=第二周看的页数;全书页数-第一周看的页数-第二周看的页数=剩下页数。
240×=40(页)
240×(1-)×+10
=240××+10
=50+10
=60(页)
240-40-60=140(页)
答:这时还剩140页没看。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
13.100棵
【解析】
用300×即可求出柳树的棵数,再乘即可求出榕树的棵数。
300××
=200×
=100(棵);
答:榕树有100棵。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
解析:100棵
【解析】
用300×即可求出柳树的棵数,再乘即可求出榕树的棵数。
300××
=200×
=100(棵);
答:榕树有100棵。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
14.480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
解析:480××
【解析】
把蔬菜大棚共480平方米看作单位“1”,根据求一个数的几分之几是多少用乘法求出整块萝卜地的面积,再根据求一个数的几分之几是多少用乘法求出红萝卜地的面积。
480××
=240×
=60(平方米)
答:红萝卜地有60平方米。
【点睛】
此题考查的是分数乘法的应用,找准单位“1”,明确单位“1”已知用乘法是解题关键。
15.9元
【解析】
39××=9(元)
答:一副陆战棋9元。
解析:9元
【解析】
39××=9(元)
答:一副陆战棋9元。
16.45个
【解析】
小梅踢的个数=玲玲踢的个数××。
=
=45(个)
答:小梅踢了45个。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计算。
解析:45个
【解析】
小梅踢的个数=玲玲踢的个数××。
=
=45(个)
答:小梅踢了45个。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计算。
17.12盆
【解析】
黄花的盆数=红花的盆数×,紫花的盆数=黄花的盆数×,则紫花的盆数=红花的盆数××,据此解答。
24××
=18×
=12(盆)
答:紫花有12盆。
【点睛】
连续求一个数的几分之几
解析:12盆
【解析】
黄花的盆数=红花的盆数×,紫花的盆数=黄花的盆数×,则紫花的盆数=红花的盆数××,据此解答。
24××
=18×
=12(盆)
答:紫花有12盆。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计算。
18.36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用
解析:36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用分数连乘计算。
19.720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解
解析:720本
【解析】
根据求一个数的几分之几是多少,用乘法进行计算即可。
1200××
=900×
=720(本)
答:五年级捐书720本。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
20.36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数
解析:36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数乘分数的意义及应用。
21.米
【解析】
相同时间内:甲乙的速度比就是∶=25∶21;
乙的速度就是甲的,相同时间内,已走的路程就是甲的。
1-=
×=
50÷(1-)
=50÷
=(米)
答:A、B两地相距米。
解析:米
【解析】
相同时间内:甲乙的速度比就是∶=25∶21;
乙的速度就是甲的,相同时间内,已走的路程就是甲的。
1-=
×=
50÷(1-)
=50÷
=(米)
答:A、B两地相距米。
22.6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几
解析:6天
【解析】
将这批零件看成单位“1”,完成这批零件共用了的天数=甲、乙两人合作完成零件的几分之几÷甲、乙两人合作每天完成这批零件的几分之几+途中甲请假的天数,其中甲、乙两人合作完成零件的几分之几=1-乙每天完成这批零件的几分之几×途中甲请假的天数,甲、乙两人合作每天完成这批零件的几分之几=甲每天完成这批零件的几分之几+乙每天完成这批零件的几分之几,据此代入数据作答即可。
(天)
答:完成这批零件共用了6天。
23.不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
解析:不能
【解析】
(箱)
(箱)
答:不能用这些油到达终点
24.1008km
【解析】
解析:1008km
【解析】
25.12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学
解析:12名
【解析】
原来108名同学看作单位”1”,根据乘法求出原来男生的人数,再把后来一共的同学看作单位“1“,则原来男生人数占现在人数的,根据已知一个数的几分之几是多少求这个数用除法,求出现在的学生数,再进一步得出结论。
原来男生人数:
(名)
后来学生总数:
(名)
(名)
答:后来又来了12名女生。
【点评】
明确这一过程中男生人数没有变,根据前后男生占总人数的分率列出等量关系式是完成本题的关键。
26.600千米
【解析】
甲、乙两地间的距离看作单位“1”,时间分之一可以看成速度,快车速度看作,慢车速度看作,用速度和×时间=行驶路程,求出4小时行驶了全程的对应分率,用200千米÷对应分率即可。
(
解析:600千米
【解析】
甲、乙两地间的距离看作单位“1”,时间分之一可以看成速度,快车速度看作,慢车速度看作,用速度和×时间=行驶路程,求出4小时行驶了全程的对应分率,用200千米÷对应分率即可。
(+)×4
=×4
=
200÷(1-)
=200÷
=600(千米)
答:甲、乙两地相距600千米。
【点睛】
关键是确定单位“1”,理解速度、时间、路程之间的关系,找到相距200千米的对应分率。
27.975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之
解析:975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之和除以(1-)即可求出全程。
×3=
(230+160)÷(1-)
=390÷
=975(千米)
答:A、B两地的距离是975千米。
【点睛】
已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”和“两车剩下的路程共占全程的(1-)”是解题的关键。
28.50千米/时
【解析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。分析
解析:50千米/时
【解析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。分析题意,甲先是行驶了1.5小时,中途停了1小时,所以后续又是行驶了1.5小时,共行驶了3小时。用甲路程除以甲行驶的时间,求出甲的速度即可。
总路程:
80×2.5÷(1-)
=200÷
=350(千米)
甲路程:350×=150(千米)
甲速度:
150÷(1.5+2.5-1)
=150÷3
=50(千米/时)
答:甲车的行驶速度是50千米/时。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于总路程。
29.分钟
【解析】
解析:分钟
【解析】
30.20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可
解析:20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可装水多少千克即可。
乙桶能装水:
12÷(1-)
=12÷
=15(千克)
甲桶能装水的质量:
15×(÷)
=15×
=20(千克)
答:甲桶可装水20千克。
【点睛】
解答此题的关键是弄清甲桶的容量是乙桶的。
31.176元
【解析】
根据单价×数量=总价,求出孔强家安装分时电表的费用;根据比的意义,用总用电量÷峰时和谷时用电量总份数,求出一份数对应用电量,一份数用电量分别乘峰时和谷时对应份数,求出峰时和谷时用
解析:176元
【解析】
根据单价×数量=总价,求出孔强家安装分时电表的费用;根据比的意义,用总用电量÷峰时和谷时用电量总份数,求出一份数对应用电量,一份数用电量分别乘峰时和谷时对应份数,求出峰时和谷时用电量,峰时用电量×单价+谷时用电量×单价=安装分时电表总费用,再求出安装前和安装后的费用差即可。
4800×0.55=2640(元)
4800÷(5+7)
=4800÷12
=400(千瓦时)
400×5=2000(千瓦时)
400×7=2800(千瓦时)
2000×0.63+2800×0.43
=1260+1204
=2464(元)
2640-2464=176(元)
答:装分时电表,一年能节约176元钱。
【点睛】
关键是理解比的意义,按比例分配应用题关键是先求出一份数。
32.720千米
【解析】
720千米
解析:720千米
【解析】
720千米
展开阅读全文