收藏 分销(赏)

常州外国语学校七年级数学上册期末压轴题汇编.doc

上传人:人****来 文档编号:5193373 上传时间:2024-10-28 格式:DOC 页数:37 大小:2.82MB
下载 相关 举报
常州外国语学校七年级数学上册期末压轴题汇编.doc_第1页
第1页 / 共37页
常州外国语学校七年级数学上册期末压轴题汇编.doc_第2页
第2页 / 共37页
常州外国语学校七年级数学上册期末压轴题汇编.doc_第3页
第3页 / 共37页
常州外国语学校七年级数学上册期末压轴题汇编.doc_第4页
第4页 / 共37页
常州外国语学校七年级数学上册期末压轴题汇编.doc_第5页
第5页 / 共37页
点击查看更多>>
资源描述

1、常州外国语学校七年级数学上册期末压轴题汇编一、七年级上册数学压轴题1如图,在数轴上,点O是原点,点A,B是数轴上的点,已知点A对应的数是a,点B对应的数是b,且a,b满足(1)在数轴上标出点A,B的位置(2)在数轴上有一个点C,满足,则点C对应的数为_(3)动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t秒()当为何值时,原点O恰好为线段PQ的中点若M为AP的中点,点N在线段BQ上,且,若时,请直接写出t的值2如图,在数轴上点A表示的数是3,点B在点A的右侧,且到点A的距离是18;点C在点A与点B之间,

2、且到点B的距离是到点A距离的2倍(1)点B表示的数是;点C表示的数是;(2)若点P从点A出发,沿数轴以每秒4个单位长度的速度向右匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向左匀速运动设运动时间为t秒,当P运动到C点时,点Q与点B的距离是多少?(3)在(2)的条件下,若点P与点C之间的距离表示为PC,点Q与点B之间的距离表示为QB在运动过程中,是否存在某一时刻使得PC+QB4?若存在,请求出此时点P表示的数;若不存在,请说明理由3阅读下面的材料并解答问题:点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即若是最小的正整数,且满

3、足(1)_,_(2)若将数轴折叠,使得与点重合:点与数_表示的点重合;若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_、_(3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值4已知:a是最大的负整数,且a、b满足|c-7|+(2a+b)2=0,请回答问题:(1)请直接写出a、b、c的值:a =_,b =_,c =_;(2)数a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表

4、示的数的差的绝对值(或用这两点所表示的数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值;(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由,若不变,请求其值5数轴上有三点,给出如下定义;若其中一个点与其他两个点的距离恰好满足倍的数量关系,则称该点是其它两个点的:“关联点”(1)例图,数轴上点三点所表示的数分别为,点到点的距离 ,

5、点到点的距离是 ,因为是的两倍,所以称点是点的“关联点”(2)若点表示数点表示数,下列各数所对应的点分别是,其中是点的“关联点”的是 ;(3)点表示数,点表示数为数轴上一个动点;若点在点的左侧,且点是点的“关联点”,求此时点表示的数;若点在点的右侧,点中,有一个点恰好是其它两个点的“关联点”请直接写出此时点表示的数6已知数轴上三点,对应的数分别为,0,3,点为数轴上任意一点,其对应的数为(1)如果点到点、点的距离相等,那么的值是_(2)数轴上是否存在点,使点到点、点的距离之和是8?若存在,求出的值;若不存在,请说明理由(3)如果点以每分钟1个单位长度的速度从点向右运动,同时另一点从点以每分钟2

6、个单位长度的速度向左运动设分钟时点和点到点的距离相等,则的值为_(直接写出答案)7已知,A,B在数轴上对应的数分用a,b表示,且,数轴上动点P对应的数用x表示.(1)在数轴上标出A、B的位置,并直接写出A、B之间的距离;(2)写出的最小值;(3)已知点C在点B的右侧且BC9,当数轴上有点P满足PB2PC时,求P点对应的数的值;数轴上另一动点Q从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,点Q能移动到与中的点P重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。8阅读绝对值拓展材料:表示数a在数轴上

7、的对应点与原点的距离如:表示5在数轴上的对应点到原点的距离而,即表示5、0在数轴上对应的两点之间的距离,类似的,有:表示5、在数轴上对应的两点之间的距离一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和的两点之间的距离是 ;(2)数轴上表示x和的两点A和B之间的距离是 ,如果A、B两点之间的距离为2,那么 (3)可以理解为数轴上表示x和 的两点之间的距离(4)可以理解为数轴上表示x的点到表示 和 这两点的距离之和可以理解为数轴上表示x的点到表示 和 这两点的距离之和(5)最小值是 ,的最小值是 9如

8、图一,点在线段上,图中有三条线段、和,若其中一条线段的长度是另外一条线段长度的倍,则称点是线段的“巧点”(1)填空:线段的中点 这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)(2)如图二,点和在数轴上表示的数分别是和,点是线段的巧点,求点在数轴上表示的数。(应用拓展)(3)在(2)的条件下,动点从点处,以每秒个单位的速度沿向点匀速运动,同时动点从点出发,以每秒个单位的速度沿向点匀速运动,当其中一点到达中点时,两个点运动同时停止,当、三点中,其中一点恰好是另外两点为端点的线段的巧点时,直接写出运动时间的所有可能值10在数轴上,点代表的数是,点代表的数是2,代表点与点之间的距离,(

9、1)填空_若点为数轴上点与之间的一个点,且,则_若点为数轴上一点,且,则_(2)若点为数轴上一点,且点到点点的距离与点到点的距离的和是35,求点表示的数;(3)若从点出发,从原点出发,从点出发,且、同时向数轴负方向运动,点的运动速度是每秒6个单位长度,点的运动速度是每秒8个单位长度,点的运动速度是每秒2个单位长度,在、同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?11如图1,P点从点A开始以的速度沿的方向移动,Q点从点C开始以的速度沿的方向移动,在直角三角形中,若,如果P,Q同时出发,用t(秒)表示移动时间(1)如图1,若点P在线段上运动,点Q

10、在线段上运动,当t为何值时,;(2)如图2,点Q在上运动,当t为何值时,三角形的面积等于三角形面积的;(3)如图3,当P点到达C点时,P,Q两点都停止运动,当t为何值时,线段的长度等于线段的长12如图,数轴上有三个点、,表示的数分别是、,请回答:(1)若使、两点的距离与、两点的距离相等,则需将点向左移动_个单位(2)若移动、三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是_个单位;(3)若在表示的点处有一只小青蛙,一步跳个单位长小青蛙第次先向左跳步,第次再向右跳步,然后第次再向左跳步,第次再向右跳步按此规律继续跳下去,那么跳第次时,应跳_步,落脚点表示的数是_

11、(4)数轴上有个动点表示的数是,则的最小值是_13已知直线AB过点O,COD90,OE是BOC的平分线(1)操作发现:如图1,若AOC40,则DOE 如图1,若AOC,则DOE (用含的代数式表示)(2)操作探究:将图1中的COD绕顶点O顺时针旋转到图2的位置,其他条件不变,中的结论是否成立?试说明理由(3)拓展应用:将图2中的COD绕顶点O逆时针旋转到图3的位置,其他条件不变,若AOC,求DOE的度数,(用含的代数式表示)14如图,已知AOB=120,射线OP从OA位置出发,以每秒2的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA

12、后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒(1)当t=2时,求POQ的度数;(2)当POQ=40时,求t的值;(3)在旋转过程中,是否存在t的值,使得POQ=AOQ?若存在,求出t的值;若不存在,请说明理由15如果两个角的差的绝对值等于60,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙伴角”(本题所有的角都指大于0小于180的角),例如,则和互为“伙伴角”,即是的“伙伴角”,也是的“伙伴角”(1)如图1O为直线上一点,则的“伙伴角”是_(2)如图2,O为直线上一点,将绕着点O以每秒1的速度逆时针旋转得,同时射线从射线的位置

13、出发绕点O以每秒4的速度逆时针旋转,当射线与射线重合时旋转同时停止,若设旋转时间为t秒,求当t何值时,与互为“伙伴角”(3)如图3,射线从的位置出发绕点O顺时针以每秒6的速度旋转,旋转时间为t秒,射线平分,射线平分,射线平分问:是否存在t的值使得与互为“伙伴角”?若存在,求出t值;若不存在,请说明理由16已知,O为直线AB上一点,射线OC将分成两部分,若时,(1)如图1,若OD平分,OE平分,求的度数;(2)如图2,在(1)的基础上,将以每秒的速度绕点O顺时针旋转,同时射线OC以每秒的速度绕点O顺时针旋转,设运动时间为t为何值时,射线OC平分?t为何值时,射线OC平分?17如图,直线相交于点O

14、,射线,垂足为点O,过点O作射线使(1)将图中的直线绕点O逆时针旋转至图,在的内部,当平分时,是否平分,请说明理由;(2)将图中的直线绕点O逆时针旋转至图,在的内部,探究与之间的数量关系,并说明理由;(3)若,将图中的直线绕点O按每秒5的速度逆时针旋转度设旋转的时间为t秒,当与互余时,求t的值18已知是关于x的二次二项式,A,B是数轴上两点,且A,B对应的数分别为a,b(1)求线段AB的中点C所对应的数;(2)如图,在数轴上方从点C出发引出射线CD,CE,CF,CG,且CF平分ACD,CG平分BCE,试猜想DCE与FCG之间是否存在确定的数量关系,并说明理由;(3)在(2)的条件下,已知DCE

15、=20,ACE=30,当DCE绕着点C以2/秒的速度逆时针旋转t秒()时,ACF和BCG中的一个角的度数恰好是另一个角度数的两倍,求t的值19如图,点,在数轴上所对应的数分别为5,7(单位长度为),是,间一点,两点分别从点,出发,以,的速度沿直线向左运动(点在线段上,点在线段上),运动的时间为(1)_(2)若点,运动到任一时刻时,总有,请求出的长(3)在(2)的条件下,是数轴上一点,且,求的长20如图,在数轴上点表示数,点表示数,满足(1)求,的值;(2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数;(3)如图,一小球甲从点处以2个单位/秒的速度向左运动

16、;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒)分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示);求甲、乙两小球相距两个单位时所经历的时间【参考答案】*试卷处理标记,请不要删除一、七年级上册数学压轴题1(1)见解析;(2);(3)时,点O恰好为线段PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对应的数为x,分两解析:(1)见解析;(2);(3)时,点O恰好为线段PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对

17、应的数为x,分两种情况,画出示意图,由题意列出方程,解方程即可;(3)分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可;根据题意得到点Q、点N对应的数,列出绝对值方程即可求解【详解】(1),点A,B的位置如图所示:(2)设点C对应的数为,由题意得:C应在A点的右侧,CA=,当点C在线段AB上时,如图所示:则CB=,CA-CB=,解得:;当点C在线段AB延长线上时,如图所示:则CB=,CA-CB=,方程无解;综上,点C对应的数为;故答案为:;(3)由题意得:,分两种情况讨论:相遇前,如图:,点O恰好为线段PQ的中点,解得:;相遇后,如图:,点O恰好为线段PQ的中点,解得:,此时,

18、不合题意;故时,点O恰好为线段PQ的中点;当运动时间为t秒时,点P对应的数为(),点Q对应的数为(),M为AP的中点,点N在线段BQ上,且,点M对应的数为,点N对应的数为,或,答:当的值为或秒时,【点睛】本题考查了一元一次方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏2(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点解析:(1)15,3;(2)3;(3)存在,1或【分析】(1)根据两点间的距离

19、公式可求点表示的数;根据线段的倍分关系可求点表示的数;(2)算出点P运动到点C的时间即可求解;(3)分点在点左侧时,点在点右侧时两种情况讨论即可求解【详解】解:(1)点表示的数是;点表示的数是故答案为:15,3;(2)当P运动到C点时,s,则,点Q与点B的距离是:;(3)假设存在,当点在点左侧时,解得此时点表示的数是1;当点在点右侧时,解得此时点表示的数是综上所述,在运动过程中存在,此时点表示的数为1或【点睛】考查了数轴、两点间的距离,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解3(1)1,5;(2)3;-1007,1011;(3)不变,值为8【分析】(1)

20、利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解解析:(1)1,5;(2)3;-1007,1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解;(3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解【详解】解:(1)b是最小的正整数,b=1,(c-5)2+|a+b|=0c=5,a=-b=-1,故答案为:1,5;(2)将数轴折叠,使得A与C点重合:AC的中点表示的数是(-1+5)2=2,与点B重合的数=2-1+2=3;点P表

21、示的数为2-20182=-1007,点Q表示的数为2+20182=1011,故答案为:-1007,1011;(3)3AC-5AB的值不变理由是:点A表示的数为:-1-2t,点B表示的数为:1+t,点C表示的数为:5+3t,AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t,3AC-5AB=3(6+5t)-5(2+3t)=8,所以3AC-5AB的值不变,为8【点睛】本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键4(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整

22、数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即解析:(1)-1,2,7;(2)2;(3)BC-AB的值不随着时间t的变化而改变,其值为2【分析】(1)根据a是最大的负整数,即可确定a的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=3t+5,AB=3t+3,从而得出BC-AB,从而求解【详解】解:(1)a是最大的负整数,a=-1,|c-7|+(2a+b)2=0,c-7=0,2a+b=0,b=2,c=7故答案为:-1,2,7;(2)BC-AB=

23、(7-2)-(2+1)=5-3=2故此时BC-AB的值是2;(3)BC-AB的值不随着时间t的变化而改变,其值为2理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+2,点C对应的数为5t+7BC=(5t+7)-(2t+2)=3t+5,AB=(2t+2)-(-1-t)=3t+3,BC-AB=(3t+5)-(3t+3)=2,BC-AB的值不随着时间t的变化而改变,其值为2【点睛】此题考查有理数及整式的混合运算,以及数轴,正确理解AB,BC的变化情况是关键5(1)2,1;(2);(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或【分析】(1)利用数

24、轴上两点之间的距离公式直接可求得;(2)根据题意求得CA解析:(1)2,1;(2);(3)当P在点B的左侧时,P表示的数为-35或或;若点P在点B的右侧,P表示的数为40或或【分析】(1)利用数轴上两点之间的距离公式直接可求得;(2)根据题意求得CA与BC的关系,得到答案;(3)根据PA=2PB或PB=2PA列方程求解;分当P为A、B关联点、A为P、B关联点、B为A、P关联点三种情况列方程解答【详解】解:(1)三点所表示的数分别为,AB=3-1=2;BC=4-3=1,故答案是:2,1;(2)点A表示的数为-2,点B表示的数为1,表示的数为-1=1 ,=2是点A,B的“关联点”点A表示的数为-2

25、,点B表示的数为1,表示的数为2=4 ,=1不是点A,B的“关联点”点A表示的数为-2,点B表示的数为1,表示的数为4=6 ,=3是点A,B的“关联点”点A表示的数为-2,点B表示的数为1,表示的数为6=8 ,=5不是点A,B的“关联点”故答案为:(3)若点P在点B的左侧,且点P是点A,B的“关联点”,设点P表示的数为(I) 当P在点A的左侧时,则有:2PA=PB,即2(-10-)=15-解得 =-35(II)当点P在A,B之间时,有2PA=PB或PA=2PB既有2(+10)=15-或+10=2(15-)解得=或因此点P表示的数为-35或或若点P在点B的右侧(I)若点P是A,B的“关联点”则有

26、2PB=PA即2(-15)=+10解得=40(II)若点B是A,P的“关联点”则有2AB=PB或AB=2PB即2(15+10)=-15或15+10=2(x-15)解得=65或(III)若点A是B,P的“关联点”则有2AB=AP即2(15+10)=+10解得=40因此点P表示的数为40或或【点睛】本题考查了一元一次方程的应用,数轴及数轴上两点的距离、动点问题,认真理解关联点的概念,分情况讨论列式是解题关键6(1)1 (2)存在,或 (3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况解析:(1)1 (2)存在,或

27、 (3)或【分析】(1)根据两点间的距离列方程求解即可;(2)分两种情况求解即可;(3)分点P和点Q相遇时和点Q运动到点M的左侧时两种情况求解【详解】解:(1)由题意得3-x=x-(-1),解得x=1;(2)存在,MN=3-(-1)=4,点P不可能在M、N之间当点P在点M的左侧时,(-1-x)+(3-x)=8,解得x=-3;当点P在点N的右侧时,x-(-1)+(x-3)=8,解得x=5;或;(3)当点P和点Q相遇时,t+2t=3,解得t=1;当点Q运动到点M的左侧时,t+1=2t-4,解得t=5;或【点睛】此题主要考查了数轴的应用以及一元一次方程的应用,分类讨论得出是解题关键7(1)A、B位置

28、见解析,AB=30;(2)30;(3)8或-4;能,第8次【分析】(1)求出a、b的值,在数轴表示即可,求出AB的距离;(2)|x-20|+|x+10|的最小值,就是数轴上解析:(1)A、B位置见解析,AB=30;(2)30;(3)8或-4;能,第8次【分析】(1)求出a、b的值,在数轴表示即可,求出AB的距离;(2)|x-20|+|x+10|的最小值,就是数轴上表示20的点,与表示-10的点之间的距离;(3)求出c的值,设出点P对应的数,用距离列方程求解即可;点Q移动时,每一次对应的数分别列举出来,发现规律,得出结论【详解】解:(1)|a-20|+(b+10)2=0,解得:a=20,b=-1

29、0;AB=20-(-10)=30;(2)|x-a|+|x-b|=|x-20|+|x+10|,当x位于点A与点B之间时,即,-10x20时,|x-20|+|x+10|的值最小,最小值为AB=30,答:|x-20|+|x+10|的最小值为30;(3)点C在点B的右侧且|BC|=9,因此点C所表示的数为-1,设点P表示的数为x,|x+10|=2|x+1|,解得x=8或x=-4;点Q每次移动对应在数轴上的数,第1次:-1,第3次:-3,第5次:-5,第2次:2,第4次:4,第6次:6,因此点Q能移动到与中的点P重合的位置,与8重合时,移动第8次,不可能与-4重合,答:点Q能移动到与中的点P重合的位置,

30、移动的次数为8次【点睛】本题考查数轴表示数的意义和方法,理解数轴上两点之间距离的计算方法,是解决问题的关键8(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计算即可;(3)根据绝解析:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计算即可;(3)根据绝对值的意义可得;(4)根据绝对值的意义可得;(5)分别得出和的意义,再根据数轴的性质可得【详解】解:(1)

31、数轴上表示2和5的两点之间的距离是3,数轴上表示1和-3的两点之间的距离是4;(2)数轴上表示x和-1的两点A和B之间的距离是|x+1|,如果|AB|=2,即|x+1|=2,x=1或-3;(3)|x+2|可以理解为数轴上表示x和-2的两点之间的距离;(4)|x-2|+|x-3|可以理解为数轴上表示x的点到表示2和3这两点的距离之和,|x+2|+|x-1|可以理解为数轴上表示x的点到表示-2和1这两点的距离之和;(5)由(4)可知:当x在2和3之间时,|x-2|+|x-3|最小值是1,当x在-2和1之间时,|x+2|+|x-1|的最小值是3【点睛】本题考查的是绝对值的问题,涉及到数轴应用问题,只

32、要理解绝对值含义和数轴上表示数值的关系(如:|x+2|表示x与-2的距离),即可求解9(1)是;(2)10或0或20;(3) ;t=6;t=12;【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为解析:(1)是;(2)10或0或20;(3) ;t=6;t=12;【分析】(1)根据新定义,结合中点把原线段分成两短段,满足原线段是短线段的2倍关系,进行判断即可;(2)由题意设C点表示的数为x,再根据新定义列出合适的方程即可;(3)根据题意先用t的代数式表示出线段AP,AQ,PQ,再根据新定义列出方程,得出合适的解即可求出t

33、的值【详解】解:(1)因原线段是中点分成的短线段的2倍,所以线段的中点是这条线段的巧点,故答案为:是;(2)设C点表示的数为x,则AC=x+20,BC=40-x,AB=40+20=60,根据“巧点”的定义可知:当AB=2AC时,有60=2(x+20),解得,x=10;当BC=2AC时,有40-x=2(x+20),解得,x=0;当AC=2BC时,有x+20=2(40-x),解得,x=20综上,C点表示的数为10或0或20;(3)由题意得,(i)、若0t10时,点P为AQ的“巧点”,有当AQ=2AP时,60-4t=22t,解得,当PQ=2AP时,60-6t=22t,解得,t=6;当AP=2PQ时,

34、2t=2(60-6t),解得,;综上,运动时间的所有可能值有;t=6;(ii)、若10t15时,点Q为AP的“巧点”,有当AP=2AQ时,2t=2(60-4t),解得,t=12;当PQ=2AQ时,6t-60=2(60-4t),解得,;当AQ=2PQ时,60-4t=2(6t-60),解得,综上,运动时间的所有可能值有:t=12;故,运动时间的所有可能值有:;t=6;t=12;【点睛】本题是新定义题,是数轴的综合题,主要考查数轴上的点与数的关系,数轴上两点间的距离,一元一次方程的应用,解题的关键是根据新定义列出方程并进行求解10(1)14;8;16或12;(2)或;(3)当时,点表示的数为,点表示

35、的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为【分析】(1)根据距离定义可直接求得答案14解析:(1)14;8;16或12;(2)或;(3)当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为【分析】(1)根据距离定义可直接求得答案14根据题目要求,P在数轴上点A与B之间,所以根据BPABAP进行求解需要考虑两种情况,即P在数轴上点A与B之间时和当P不在数轴上点A与B之间时当P在数轴上点A与B之间时,APABBP当P不在数轴上点A与B之间时,此时有两种情况,一种是超越A点,在A点左侧,此时BP14,不符合题目要求另一种情况是P在B

36、点右侧,此时根据APABBP作答(2)根据前面分析,C不可能在AB之间,所以,C要么在A左侧,要么在B右侧根据这两种情况分别进行讨论计算(3)因为M点的速度为每秒2个单位长度,远小于P、Q的速度,因此M点永远在P、Q的右侧“当其中一个点与另外两个点的距离相等时”这句话可以理解成一点在另外两点正中间因此有几种情况进行讨论,第一是Q在P和M的正中间,另一种是P在Q和M的正中间第三种是PQ重合时,MPMQ,三种情况分别列式进行计算求解【详解】(1)点代表的数是,点代表的数是2故答案为:14点为数轴上之间的一点,且,故答案为:8点为数轴上一点,且,或12故答案为:16或12(2)点到点的距离与点到点的

37、距离之和为35当点在点左侧时,点表示的数为当点在点右侧时,点表示的数为,点表示的数为或(3)当点到点、两个点距离相等时,解得此时点表示的数为,点表示的数为,点表示的数为当点到、两个点距离相等时,解得(舍)当、重合时,即点到、两个点距离相等,解得,此时点表示的数为,点表示的数为点表示的数为因此,当时,点表示的数为,点表示的数为,点表示的数为;当时,点表示的数为,点表示的数为,点表示的数为【点睛】本题考查了动点问题与一元一次方程的应用在充分理解题目要求的基础上,可借助数轴用数形结合的方法求解在解答过程中,注意动点问题的多解可能,并针对每一种可能进行讨论分析11(1)4,(2)9,(3)或4【分析】

38、(1)当P在线段AB上运动,Q在线段CA上运动时,设CQt,AP2t,则AQ12t,由AQAP,可得方程12t2t,解方程即可(2)当Q在解析:(1)4,(2)9,(3)或4【分析】(1)当P在线段AB上运动,Q在线段CA上运动时,设CQt,AP2t,则AQ12t,由AQAP,可得方程12t2t,解方程即可(2)当Q在线段CA上时,设CQt,则AQ12t,根据三角形QAB的面积等于三角形ABC面积的,列出方程即可解决问题(3)分三种情形讨论即可当0t8时,P在线段AB上运动,Q在线段CA上运动当8t12时,Q在线段CA上运动,P在线段BC上运动当t12时,Q在线段AB上运动,P在线段BC上运动

39、时,分别列出方程求解即可【详解】解:(1)当P在线段AB上运动,Q在线段CA上运动时,设CQt,AP2t,则AQ12t,AQAP,12t2t,t4t4时,AQAP(2)当Q在线段CA上时,设CQt,则AQ12t,三角形QAB的面积等于三角形ABC面积的,ABAQABAC,16(12t)1612,解得t9t9时,三角形QAB的面积等于三角形ABC面积的(3)由题意可知,Q在线段CA上运动的时间为12秒,P在线段AB上运动时间为8秒,当0t8时,P在线段AB上运动,Q在线段CA上运动,设CQt,AP2t,则AQ12t,BP162t,AQBP,12t162t,解得t4当8t12时,Q在线段CA上运动

40、,P在线段BC上运动,设CQt,则AQ12t,BP2t16,AQBP,12t2t16,解得t当t12时,Q在线段AB上运动,P在线段BC上运动时,AQt12,BP2t16,AQBP,t122t16,解得t4(舍去),综上所述,t或4时,AQBP【点睛】本题考查线段和差、一元一次方程等知识,解题的关键是理解题意,学会用方程的思想思考问题,属于中考常考题型12(1)3;(2)3,7;(3)197,;(4)9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再解析:(1)3;(2)3,7;(3)197,;(4)

41、9【分析】(1)设需将点C向左移动x个单位,再根据数轴的定义建立方程,解方程即可得;(2)分为三种:移动点B、C;移动点A、C;移动点A、B,再利用数轴的定义分别求出移动所走的距离和即可得;(3)先根据前4次归纳类推出一般规律,再列出运算式子,计算有理数的加减法即可得;(4)分,和数四种情况,再分别结合数轴的定义、化简绝对值即可得【详解】(1)设需将点C向左移动x个单位,由题意得:,解得,即需将点C向左移动3个单位,故答案为:3;(2),由题意,分以下三种情况:移动点B、C,把点B向左移动2个单位,点C向左移动7个单位,此时移动所走的距离和为;移动点A、C,把点A向右移动2个单位,点C向左移动

42、5个单位,此时移动所走的距离和为;移动点A、B,把点A向右移动7个单位,点B向右移动5个单位,此时移动所走的距离和为;综上,移动方法有3种,其中移动所走的距离和最小的是7个单位,故答案为:3,7;(3)第次跳的步数为,第次跳的步数为,第次跳的步数为,第次跳的步数为,归纳类推得:第n次跳的步数为,其中n为正整数,则第99次跳的步数为,落脚点表示的数为,故答案为:197,;(4)由题意,分以下四种情况:当时,则;当时,则,;当时,则,;当时,则;综上,则的最小值是9,故答案为:9【点睛】本题考查了数轴、化简绝对值、一元一次方程的应用等知识点,熟练掌握数轴的定义是解题关键13(1)20,;(2)成立,理由见详解;(3)180【分析】(1)如图1,根据平角的定义和COD90,得AOCBOD90,从而BOD50,OE是BOC的平分线,可得解析:(1)20,;(2)成立,理由见详解;(3)180【分析】(1)如图1,根据平角的定义和COD90,得AOCBOD90,从而BOD50,OE是BOC的平分线,可得BOE70,由角的和差得DOE20;同理可得:DOE;(2)如图2,根据平角的定义得:BOC180,由角平分线定义得:EOCBOC90,根据角的差可得(1)中的结论还成立;(

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服