1、2020-2021天津九年级数学 一元二次方程组的专项 培优练习题一、一元二次方程1如图,A、B、C、D为矩形的4个顶点,AB16cm,BC6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?(3)若点P沿着ABBCCD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移
2、动,试探求经过多长时间PBQ的面积为12cm2?【答案】(1)PQ=6cm;(2)s或s;(3)经过4秒或6秒PBQ的面积为 12cm2【解析】试题分析:(1)作PECD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;(2)设x秒后,点P和点Q的距离是10cm在RtPEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;(3)分类讨论:当点P在AB上时;当点P在BC边上;当点P在CD边上时试题解析:(1)过点P作PECD于E则根据题意,得EQ=16-23-22=6(cm),PE=AD=6cm;在RtPEQ中,根据勾股定理,得PE2+EQ2=P
3、Q2,即36+36=PQ2,PQ=6cm;经过2s时P、Q两点之间的距离是6cm;(2)设x秒后,点P和点Q的距离是10cm(16-2x-3x)2+62=102,即(16-5x)2=64,16-5x=8,x1=,x2=;经过s或sP、Q两点之间的距离是10cm;(3)连接BQ设经过ys后PBQ的面积为12cm2当0y时,则PB=16-3y,PBBC=12,即(16-3y)6=12,解得y=4;当x时,BP=3y-AB=3y-16,QC=2y,则BPCQ=(3y-16)2y=12,解得y1=6,y2=-(舍去);x8时,QP=CQ-PQ=22-y,则QPCB=(22-y)6=12,解得y=18(
4、舍去)综上所述,经过4秒或6秒PBQ的面积为 12cm2考点:一元二次方程的应用2如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=1(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上当PANA,且PA=NA时,求此时点P的坐标;当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标【答案】(1)y=(x+1)2+4,顶点坐标为(1,4);(2)点P(1,2);P( ,)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为即可得到抛物线的解析式;(2)
5、首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;,表示出来得到二次函数,求得最值即可试题解析:(1)抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为,解得:,二次函数的解析式为=,顶点坐标为(1,4);(2)令,解得或,点A(3,0),B(1,0),作PDx轴于点D,点P在上,设点P(x,),PANA,且PA=NA,PADAND,OA=PD,即,解得x=(舍去)或x=,点P(,2);设P(x,y),则,=OBOC+ADPD+(PD+OC)OD=,当x=时,=,当x=时,=,此时P(,)考点:1二次函数综合题;
6、2二次函数的最值;3最值问题;4压轴题3已知关于x的方程的两个实数根的倒数和等于3,且关于x的方程有实数根,又k为正整数,求代数式的值【答案】0.【解析】【分析】由于关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a的方程求出a,又由于关于x的方程(k-1)x2+3x-2a=0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k为正整数,利用判别式可以求出k,最后代入所求代数式计算即可求解【详解】解:设方程的两个实数根分别为x1、x2则 ,由条件,知=3,即,且,故a1,则方程为(k-1)x2+3x+2=0,.当k-1=0时,k=1
7、,x=,则.当k-10时,=9-8(k-1)=17-6-8k0,则,又k是正整数,且k1,则k=2,但使无意义.综上,代数式的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k的值与方程判别式的关系要注意该方程可能是一次方程、有可能是一元二次方程,4解方程:(x+1)(x3)=1【答案】x1=1+,x2=1【解析】试题分析:根据方程的特点,先化为一般式,然后利用配方法求解即可.试题解析:整理得:x22x=2,配方得:x22x+1=3,即(x1)2=3,解得:x1=1+,x2=15已知关于x的方程x2(2k+1)x+k2+10(1)若方程有两个不相等的实数根,求k
8、的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k2,求该矩形的对角线L的长【答案】(1)k;(2).【解析】【分析】(1)根据关于x的方程x2(2k1)xk210有两个不相等的实数根,得出0,再解不等式即可;(2)当k=2时,原方程x2-5x+5=0,设方程的两根是m、n,则矩形两邻边的长是m、n,利用根与系数的关系得出m+n=5,mn=5,则矩形的对角线长为,利用完全平方公式进行变形即可求得答案.【详解】(1)方程x2(2k1)xk210有两个不相等的实数根,(2k1)241(k21)4k30,k;(2)当k2时,原方程为x25x50,设方程的两个根为m,n,mn5,mn5,矩形
9、的对角线长为:.【点睛】本题考查了根的判别式、根与系数的关系、矩形的性质等,一元二次方程根的情况与判别式的关系:(1)0时,方程有两个不相等的实数根;(2)=0时,方程有两个相等的实数根;(3)0时,方程没有实数根6解方程:x22x2x1.【答案】x12 ,x22.【解析】试题分析:根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式求解即可.试题解析:方程化为x24x10.b24ac(4)241(1)20,x2 ,x12 ,x22.7 1.735=59.5,1.780=136151这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨
10、(或水费是按来计算的)则有151=1.780+(80m)即m280m+1500=0解得m1=30,m2=50又四月份用水量为35吨,m1=3035,m1=30舍去m=50 【解析】8沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区
11、的知晓人数第一个月增长了m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50【解析】【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.592%,据此列出关于m的方程并解答【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x2x,解得x2.5即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5(1+m%)+1.5(1
12、+m%)(1+2m%)=7.592%,解得m=50答:m的值为50【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程9已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根【答案】(1)见解析;(2) 即m的值为0,方程的另一个根为0.【解析】【分析】(1)可用根的判别式,计算判别式得到=(m+2)241m=m2+40,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关
13、系得到2+t= ,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:=(m+2)241m=m2+4,无论m为何值时m20,m2+440,即0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t= ,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.10工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将
14、四角各裁掉一个正方形(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.11已知关于x的方程(a1)x2+2x+a10(1)若该方程有一根为2,求a的值
15、及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根【答案】(1)a=,方程的另一根为;(2)答案见解析.【解析】【分析】(1)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:当a=1时,为一元一次方程;当a1时,利用b24ac0求出a的值,再代入解方程即可【详解】(1)将x2代入方程,得,解得:a将a代入原方程得,解得:x1,x22a,方程的另一根为;(2)当a1时,方程为2x0,解得:x0.当a1时,由b24ac0得44(a1)20,解得:a2或0当a2时, 原方程为:x22x10,解得:x1x21;当a0时, 原方程为
16、:x22x10,解得:x1x21综上所述,当a1,0,2时,方程仅有一个根,分别为0,1,1.考点:1.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.12淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动甲网店销售的A商品的成本为30元/件,网上标价为80元/件(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲
17、网店一致,一周可售出1000件A商品在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元【解析】【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)
18、根据总利润每件的利润销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论【详解】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据题意得:80(1x)239.2,解得:x10.330%,x21.7(不合题意,舍去)答:平均每次降价率为30%,才能使这件A商品的售价为39.2元(2)根据题意得:0.580(1+a%)301000(1+2a%)30000,整理得:a2+75a25000,解得:a125,a2100(不合题意,舍去),80(1+a%)80(1+25%)100答:乙网店在“双十一”购物活动这天的网上标价为100元
19、【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键13重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值【答案】(1)销售单价至少为35元;(2)m=16【解析】试题分析:(1)根据利润的公式列出方程,再求解即可;(2)销售价为原销
20、售价(1m%),销售量为(150+m),列出方程求解即可试题解析:(1)设销售单价至少为x元,根据题意列方程得,150(x20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35(1m%)(150+m)=5670,150+m150m%m%m=162,mm2=12,60m3m2=192,m220m+64=0,m1=4,m2=16,要使销售量尽可能大,m=16【考点】一元二次方程的应用;一元一次不等式的应用14山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专
21、卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60x40)(100+20)=2240,化简,得 x210x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元. 要尽可能让利于顾客,每千克核桃应降价6元.此时,售价为:606=54(元),.答:该店应按原售价的九折出售.15今年以来猪肉价格不断走高,引起了民众与
22、区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元(1)A 超市 11 月排骨的进货价为年初排骨售价的倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?(2)11 月 11
23、日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a%,且储备排骨的销量占总销量的,两种排骨销售的总金额比 11 月 10 日提高了a%,求 a 的值【答案】(1)售价为每千克65元;(2)a=35.【解析】【分析】(1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x元,则每千克的利润为10-x元,日销量为100+20x 千克,根据销量单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;(2)根据销售
24、总金额=储备排骨销售单价储备排骨销售数量+非储备排骨销售单价非储备排骨销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论【详解】解:(1)11月10日的售价为3505=70元/千克年初的售价为:3505175=40元/千克,11月的进货价为: 元/千克设每千克降价x元,则每千克的利润为70-60-x=10-x元,日销量为100+20x 千克则,解得,因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元.(2)根据题意可得解得,(舍去)所以a=35.【点睛】本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令,解方程求出t后再求a的值.