资源描述
一、解答题
1.如图,在平面直角坐标系中,,CD//x轴,CD=AB.
(1)求点D的坐标:
(2)四边形OCDB的面积四边形OCDB;
(3)在y轴上是否存在点P,使△PAB=四边形OCDB;若存在,求出点P的坐标,若不存在,请说明理由.
2.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
3.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.
(1)若点P,F,G都在点E的右侧,求的度数;
(2)若点P,F,G都在点E的右侧,,求的度数;
(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.
4.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= .
5.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
6.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
7.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”.
(初步探究)
(1)直接写出计算结果:2③=___,()⑤=___;
(2)关于除方,下列说法错误的是___
A.任何非零数的圈2次方都等于1;
B.对于任何正整数n,1ⓝ=1;
C.3④=4③;
D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(-3)④=___; 5⑥=___;(-)⑩=___.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___;
(3)算一算:÷(−)④×(−2)⑤−(−)⑥÷
8.阅读材料:求的值.
解:设①,将等式①的两边同乘以2,
得②,
用②-①得,
即.
即.
请仿照此法计算:
(1)请直接填写的值为______;
(2)求值;
(3)请直接写出的值.
9.观察下列各式:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
……
(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.
(2)你能否由此归纳出一般性规律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.
(3)根据以上规律求1+3+32+…+349+350的结果.
10.阅读下列材料:小明为了计算的值,采用以下方法:
设 ①
则 ②
②-①得,
请仿照小明的方法解决以下问题:
(1)________;
(2)_________;
(3)求的和(,是正整数,请写出计算过程).
11.已知,在计算:的过程中,如果存在正整数,使得各个数位均不产生进位,那么称这样的正整数为“本位数”.例如:2和30都是“本位数”,因为没有进位,没有进位;15和91都不是“本位数”,因为,个位产生进位,,十位产生进位.则根据上面给出的材料:
(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.
106( );111( );400( );2015( ).
(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 .
(3)在所有三位数中,“本位数”一共有多少个?
12.三个自然数x、y、z组成一个有序数组,如果满足,那么我们称数组为“蹦蹦数组”.例如:数组中,故是“蹦蹦数组”;数组中,故不是“蹦蹦数组”.
(1)分别判断数组和是否为“蹦蹦数组”;
(2)s和t均是三位数的自然数,其中s的十位数字是3,个位数字是2,t的百位数字是2,十位数字是5,且.是否存在一个整数b,使得数组为“蹦蹦数组”.若存在,求出b的值;若不存在,请说明理由;
(3)有一个三位数的自然数,百位数字是1,十位数字是p,个位数字是q,若数组为“蹦蹦数组”,且该三位数是7的倍数,求这个三位数.
13.已知,在平面直角坐标系中,AB⊥x轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C.
(1)则a= ,b= ,点C坐标为 ;
(2)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;
(3)如图2,E是线段OB上一动点,以OB为边作∠BOG=∠AOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值.
14.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
15.如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、、.
(1)若在轴上存在点,连接,使S△ABM =S□ABDC,求出点的坐标;
(2)若点在线段上运动,连接,求S=S△PCD+S△POB的取值范围;
(3)若在直线上运动,请直接写出的数量关系.
16.对于三个数,,,表示,,这三个数的平均数,表示,,这三个数中最小的数,如:
,;
,.
解决下列问题:
(1)填空:______;
(2)若,求的取值范围;
(3)①若,那么______;
②根据①,你发现结论“若,那么______”(填,,大小关系);
③运用②解决问题:若,求的值.
17.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.
(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;
(2)求四边形的面积;
(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.
18.(了解概念)
在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作.同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.
(理解运用)
在平面直角坐标系中,.
(1)线段的“勾股距” ;
(2)若点在第三象限,且,求并判断是否为“等距三角形”﹔
(拓展提升)
(3)若点在轴上,是“等距三角形”,请直接写出的取值范围.
19.(阅读感悟)
一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足①,②,求和的值.
本题的常规思路是将①②两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由①-②可得,由①+②×2可得.这样的解题思想就是通常所说的“整体思想”.
(解决问题)
(1)已知二元一次方程组,则 , .
(2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?
(3)对于实数,,定义新运算:,其中,,是常数,等式右边是通常的加法和乘法运算.已知,,求的值.
20.(1)阅读下列材料并填空:
对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数表,求得的一次方程组的解 ,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:
从而得到该方程组的解为x= ,y= .
(2)仿照(1)中数表的书写格式写出解方程组的过程.
21.阅读下列材料,解答下面的问题:
我们知道方程有无数个解,但在实际生活中我们往往只需求出其
正整数解.
例:由,得:,(x、y为正整数)
∴,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为
问题:
(1)请你写出方程的一组正整数解: .
(2)若为自然数,则满足条件的x值为 .
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
22.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.
23.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,
(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?
(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则的值可能是( )
A.2019 B.2020 C.2021 D.2022
(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?
24.如果3个数位相同的自然数m,n,k满足:m+n=k,且k各数位上的数字全部相同,则称数m和数n是一对“黄金搭档数”.例如:因为25,63,88都是两位数,且25+63=88,则25和63是一对“黄金搭档数”.再如:因为152,514,666都是三位数,且152+514=666,则152和514是一对“黄金搭档数”.
(1)分别判断87和12,62和49是否是一对“黄金搭档数”,并说明理由;
(2)已知两位数s和两位数t的十位数字相同,若s和t是一对“黄金搭档数”,并且s与t的和能被7整除,求出满足题意的s.
25.某校为了丰富同学们的课外活动,决定给全校20个班每班配4副乒乓球拍和若干乒乓球,两家体育用品商店对同一款乒乓球拍和乒乓球推出让利活动,甲商店买一副乒乓球拍送10个乒乓球,乙商店所有商品均打九折(按标价的90%)销售,已知2副乒乓球拍和10个乒乓球110元,3副乒乓球拍和20个乒乓球170元。
请解答下列问题:
(1)求每副乒乓球拍和每个乒乓球的单价为多少元.
(2)若每班配4副乒乓球拍和40个乒乓球,则甲商店的费用为 元,乙商店的费用为 元.
(3)每班配4副乒乓球拍和m(m>100)个乒乓球则甲商店的费用为 元,乙商店的费用为 元.
(4)若该校只在一家商店购买,你认为在哪家超市购买更划算?
26.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:
(1)求A、B两点的坐标;
(2)设三角形ABC面积为,若4<≤7,求m的取值范围;
(3)设,请给出,满足的数量关系式,并说明理由.
27.阅读材料:
关于x,y的二元一次方程ax+by=c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.
小明参考阅读材料,解决该问题如下:
解:该方程一组整数解为,则全部整数解可表示为(t为整数).
因为解得.因为t为整数,所以t=0或-1.
所以该方程的正整数解为和 .
(1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;
(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;
(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案.
28.对于实数x,若,则符合条件的中最大的正数为的内数,例如:8的内数是5;7的内数是4.
(1)1的内数是______,20的内数是______,6的内数是______;
(2)若3是x的内数,求x的取值范围;
(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为,例如当时,,如图2①……;当时,,如图2②,③;……
①用表示的内数;
②当的内数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)
29.材料1:我们把形如(、、为常数)的方程叫二元一次方程.若、、为整数,则称二元一次方程为整系数方程.若是,的最大公约数的整倍数,则方程有整数解.例如方程都有整数解;反过来也成立.方程都没有整数解,因为6,3的最大公约数是3,而10不是3的整倍数;4,2的最大公约数是2,而1不是2的整倍数.
材料2:求方程的正整数解.
解:由已知得:……①
设(为整数),则……②
把②代入①得:.
所以方程组的解为 ,
根据题意得:.
解不等式组得0<<.所以的整数解是1,2,3.
所以方程的正整数解是:,,.
根据以上材料回答下列问题:
(1)下列方程中:① ,② ,③ ,④ ,⑤ ,⑥ .没有整数解的方程是 (填方程前面的编号);
(2)仿照上面的方法,求方程的正整数解;
(3)若要把一根长30的钢丝截成2长和3长两种规格的钢丝(两种规格都要有),问怎样截才不浪费材料?你有几种不同的截法?(直接写出截法,不要求解题过程)
30.如图,平面直角坐标系中,点的坐标是,点在轴的正半轴上,的面积等于18.
(1)求点的坐标;
(2)如图,点从点出发,沿轴正方向运动,点运动至点停止,同时点从点出发,沿轴正方向运动,点运动至点停止,点、点的速度都为每秒1个单位,设运动时间为秒,的面积为,求用含的式子表示,并直接写出的取值范围;
(3)在(2)的条件下,过点作,连接并延长交于,连接交于点,若,求值及点的坐标.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)(2)7(3)点的坐标为或
【详解】
试题分析:⑴抓住∥轴,可以推出纵坐标相等,而是横坐标之差的绝对值,以此可以求出点的坐标,根据图示要舍去一种情况.
⑵四边形是梯形,根据点的坐标可以求出此梯形的上、下底和高,面积可求.
⑶存在性问题可以先假设存在,在假设的基础上以△ = 四边形为等量关系建立方程,以此来探讨在轴上是否存在着符合条件的点.
试题解析:⑴.∵∥轴, ∴纵坐标相等;
∵ ∴点的纵坐标也为2.
设点的坐标为,则.
又,且,
∴,解得:.
由于点在第一象限,所以,所以的坐标为.
⑵.∵ ∥轴,且
∴
∴四边形 = .
⑶.假设在轴上存在点,使△ = 四边形.
设的坐标为,则,而
∴△ =.
∵△ = 四边形,四边形
∴ ,解得;.均符合题意.
∴在轴上存在点,使△ = 四边形.
点的坐标为或.
2.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
3.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,
①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=x,
∵∠ECD=80°,
∴x+x+x+x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,
∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
4.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
5.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
6.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
7.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.
【分析】
初步探究:
(1)根据除方运算的定义即可得出答案;
(2)根据除方运算的定义逐一判断即可得出答案;
深入思考:
(1)根据除方运算的定义即可得出答案;
(2)根据(1)即可总结出(2)中的规律;
(3)先按照除方的定义将每个数的圈n次方算出来,再根据有理数的混合运算法则即可得出答案.
【详解】
解:初步探究:
(1)2③=2÷2÷2=
()⑤=
(2)A:任何非零数的圈2次方就是两个相同数相除,所以都等于1,故选项A错误;
B:因为多少个1相除都是1,所以对于任何正整数n,1ⓝ都等于1,故选项B错误;
C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故选项C正确;
D:负数的圈奇数次方,相当于奇数个负数相除,则结果是负数;负数的圈偶数次方,相当于偶数个负数相除,则结果是正数,故选项D错误;
故答案选择:C.
深入思考:
(1)(-3)④=(-3)÷(-3)÷(-3) ÷(-3)=
5⑥=5÷5÷5÷5÷5÷5=
(-)⑩=
(2)aⓝ=a÷a÷a…÷a=
(3)原式=
=
=
=-5
【点睛】
本题主要考查了除方运算,运用到的知识点是有理数的混合运算,掌握有理数混合运算的法则是解决本题的关键.
8.(1)15;(2);(3).
【分析】
(1)先计算乘方,即可求出答案;
(2)根据题目中的运算法则进行计算,即可求出答案;
(3)根据题目中的运算法则进行计算,即可求出答案;
【详解】
解:(1);
故答案为:15;
(2)设①,把等式①两边同时乘以5,得
②,
由②①,得:,
∴,
∴;
(3)设①,
把等式①乘以10,得:
②,
把①+②,得:,
∴,
∴,
∴
.
【点睛】
本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键.
9.(1)x7-1;(2)xn+1-1;(3).
【分析】
(1)仿照已知等式写出答案即可;
(2)先归纳总结出规律,然后按规律解答即可;
(3)先利用得出规律的变形,然后利用规律解答即可.
【详解】
解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;
(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;
(3)原式=×(3-1)(1+3+32+···+349+350)= ×(x50+1-1)=
故答案为:(1)x7-1;(2)xn+1-1;(3).
【点睛】
本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.
10.(1);(2);(3)
【分析】
(1)设式子等于s,将方程两边都乘以2后进行计算即可;
(2)设式子等于s,将方程两边都乘以3,再将两个方程相减化简后得到答案;
(3)设式子等于s,将方程两边都乘以a后进行计算即可.
【详解】
(1)设s=①,
∴2s=②,
②-①得:s=,
故答案为:;
(2)设s=①,
∴3s=②,
②-①得:2s=,
∴,
故答案为: ;
(3)设s=①,
∴as=②,
②-①得:(a-1)s=,
∴s=.
【点睛】
此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.
11.(1)×,√,×,×;(2)3332;1000;(3)(个).
【分析】
(1)根据“本位数”的定义即可判断;
(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;
(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).
【详解】
解:(1)有进位;
没有进位;
有进位;
有进位;
故答案为:×,√,×,×.
(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;
千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,
故答案为:3332,1000.
(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).
【点睛】
本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.
12.(1)(437,307,177)是“蹦蹦数组”, (601,473,346)不是“蹦蹦数组”;(2)存在,数组为(532,395,258);(3)这个三位数是147.
【分析】
(1)由“蹦蹦数组”的定义进行验证即可;
(2)设s为,t为,则,先后求得n、s的值,根据“蹦蹦数组”的定义即可求解;
(3)设这个数为,则,由和都是0到9的正整数,列举法即可得出这个三位数.
【详解】
解:(1)数组(437,307,177)中,437-307=130,307-177=130,
∴437-307=307-177,故(437,307,177)是“蹦蹦数组”;
数组(601,473,346)中,601-473=128,473-346=127,
∴601-473473-346,故(601,473,346)不是“蹦蹦数组”;
(2)设s为,t为,则,
∵m、n为整数,
∴,则t为258,
∴s为532,
而,则b为532-137=395,
验算:532-395=395-258=137,
故数组为(532,395,258);
(3)根据题意,设这个数为,则,
∴,
而和都是0到9的正整数,
讨论:
p
1
2
3
4
5
q
1
3
5
7
9
111
123
135
147
159
而是7的倍数的三位数只有147,
且1-4=4-7=-3,数组(1,4,7)为“蹦蹦数组”,
故这个三位数是147.
【点睛】
本题是一道新定义题目,解决的关键是能够根据定义,通过列举法找到合适的数,进而求解.
13.(1);(2);(3)不变,值为2.
【分析】
(1)根据,即可得出a,b的值,再根据平移的性质得出,因为点C在y轴负半轴,即可得出点C的坐标;
(2)过点D分别作DM⊥x轴于点M, DN⊥y轴于点N,连接OD,在中用等面积法即可求出m和n的关系式;
(3)分别过点E,F作EP∥OA, FQ∥OA分别交y轴于点P,点Q,根据平行线的性质,得出 进而得到的值.
【详解】
(1)解:∵,
∴
∴
∵且C在y轴负半轴上,
∴,
故填:;
(2)如图1,过点D分别作DM⊥x轴于点M, DN⊥y轴于点N,连接OD.
∵AB⊥ x轴于点B,且点A,D,C三点的坐标分别为:
∴,
∴,
又∵S△BOC = S△BOD+S△COD
=OB×MD+OC×ND
,
∴;
(3)解:
展开阅读全文