资源描述
2022年人教版七7年级下册数学期末测试试卷含答案
一、选择题
1.4的算术平方根是()
A.2 B.4 C. D.
2.下列图案中,是通过下图平移得到的是( )
A. B. C. D.
3.点A(-2,-4)所在象限为( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )
A.1 B.2 C.3 D.4
5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )
A. B. C. D.
6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )
A.3 B.4 C.5 D.6
7.如图,AB∥CD,将一块三角板(∠E=30°)按如图所示方式摆放,若∠EFH=25°,求∠HGD的度数( )
A.25° B.30° C.55° D.60°
8.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则运动到第2021秒时,点P所处位置的坐标是( )
A.(2020,﹣1) B.(2021,0) C.(2021,1) D.(2022,0)
九、填空题
9.=________.
十、填空题
10.点关于轴对称的点的坐标为_________.
十一、填空题
11.已知,射线在同一平面内绕点O旋转,射线分别是和的角平分线.则的度数为______________.
十二、填空题
12.如图,已知AB∥CD,如果∠1=100°,∠2=120°,那么∠3=_____度.
十三、填空题
13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.
十四、填空题
14.“”定义新运算:对于任意的有理数a和b,都有.例如:.当m为有理数时,则等于________.
十五、填空题
15.若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为________.
十六、填空题
16.如图所示,动点在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点,第二次接着运动到点,第三次接着运动到点,…,按这样的运动规律,经过次运动后,动点的坐标是________.
十七、解答题
17.计算:
(1)
(2)
(3)
(4)
十八、解答题
18.求下列各式中x的值:
(1)9x2-25=0;
(2)(x+3)3+27=0.
十九、解答题
19.如图,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他又没有带量角器,只带了一副三角尺,于是他想了这样一个办法:首先连接CF,再找出CF的中点O,然后连接EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补.
请将小华的想法补充完整:
∵和交于点.
∴;( )
而是的中点,那么,又已知,
∴( ),
∴,(全等三角形对应边相等)
∴,( )
∴,( )
∴和互补.( )
二十、解答题
20.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).
(1)在平面直角坐标系中画出△ABC;
(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;
(3)求△A′B′C′的面积.
二十一、解答题
21.解下列问题:
(1)已知;求的值.
(2)已知的小数部分为的整数部分为,求的值.
二十二、解答题
22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
二十三、解答题
23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).
(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 .
(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 .
二十四、解答题
24.已知直线,点分别为, 上的点.
(1)如图1,若,, ,求与的度数;
(2)如图2,若,, ,则_________;
(3)若把(2)中“,, ”改为“,, ”,则_________.(用含的式子表示)
二十五、解答题
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
【参考答案】
一、选择题
1.A
解析:A
【分析】
依据算术平方根的定义解答即可.
【详解】
4的算术平方根是2,
故选:A.
【点睛】
本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.
2.C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变
解析:C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.
3.C
【分析】
先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.
【详解】
A(-2,-4)的横坐标是负数,纵坐标是负数,符合点在第三象限的条件,
所以点A在第三象限.
故选C.
【点睛】
本题主要考查点的坐标所在的象限,解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.
【详解】
解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;
②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;
③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;
④平行于同一直线的两条直线平行,正确.
故选:B.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.
5.B
【分析】
根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出.
【详解】
解:由翻折可知,∠DAE=2,∠CBF=2,
∵,
∴∠DAB+∠CBA=180°,
∴∠DAE+∠CBF=180°,
即,
∴,
故选:B.
【点睛】
本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.
6.A
【分析】
根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.
【详解】
解:立方根等于本身的数有:,1,0,故①正确;
平方根等于本身的数有:0,故②错误;
两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误;
实数与数轴上的点一一对应,故④正确;
是无理数,不是分数,故⑤错误;
从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.
故选:A.
【点睛】
本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.
7.C
【分析】
先根据三角形外角可求∠EHB=∠EFH+∠E=55°,根据平行线性质可得∠HGD=∠EHB=55°即可.
【详解】
解:∵∠EHB为△EFH的外角,∠EFH=25°,∠E=30°,
∴∠EHB=∠EFH+∠E=25°+30°=55°,
∵AB∥CD,
∴∠HGD=∠EHB=55°.
故选C.
【点睛】
本题考查三角形外角性质,平行线性质,掌握三角形外角性质,平行线性质是解题关键.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.
【详解】
半径为1个单位长度的半圆的周长为:,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P1秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
可得移动4次图象完成一个循环,
∵2021÷4=505…1,
∴点P运动到2021秒时的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
九、填空题
9.6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
解析:6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
十、填空题
10.【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握
解析:
【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
十一、填空题
11.50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的
解析:50°
【分析】
分射线OC在∠AOB的内部和射线OC在∠AOB的外部,分别画出图形,结合根据角平分线定义求解.
【详解】
解:若射线OC在∠AOB的内部,
∵OE,OF分别是∠AOC和∠COB的角平分线,
∴∠EOC=∠AOC,∠FOC=∠BOC,
∴∠EOF=∠EOC+∠FOC=∠AOC+∠BOC=50°;
若射线OC在∠AOB的外部,
①射线OE,OF只有1个在∠AOB外面,如图,
∠EOF=∠FOC-∠COE=∠BOC-∠AOC=(∠BOC-∠AOC)=∠AOB=50°;
②射线OE,OF都在∠AOB外面,如图,
∠EOF=∠EOC+∠COF=∠AOC+∠BOC=(∠AOC+∠BOC)=(360°-∠AOB)=130°;
综上:∠EOF的度数为50°或130°,
故答案为:50°或130°.
【点睛】
本题考查的是角的计算,角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.注意分类思想的运用.
十二、填空题
12.40
【分析】
过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.
【详解】
解:如图:过作平行于,
,
,
,
,即,
.
故答案为:40.
【
解析:40
【分析】
过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.
【详解】
解:如图:过作平行于,
,
,
,
,即,
.
故答案为:40.
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
十三、填空题
13.72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的
解析:72
【分析】
根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.
【详解】
解:如图,
长方形的两边平行,
,
折叠,
,
.
故答案为:.
【点睛】
本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.
十四、填空题
14.101
【分析】
根据“”的定义进行运算即可求解.
【详解】
解:=== =101.
故答案为:101.
【点睛】
本题考查了新定义运算,理解新定义的法则是解题关键.
解析:101
【分析】
根据“”的定义进行运算即可求解.
【详解】
解:=== =101.
故答案为:101.
【点睛】
本题考查了新定义运算,理解新定义的法则是解题关键.
十五、填空题
15.2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离
解析:2
【分析】
点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.
【详解】
∵点P(a+3,2a+4)在y轴上
∴a+3=0,解得:a=-3
∴P(0,-2)
∴点P到x轴的距离为:2
故答案为:2
【点睛】
本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.
十六、填空题
16.(1010,1011)
【分析】
仔细观察图形,找到图形变化的规律,利用规律求解即可.
【详解】
解:观察发现:
第一次运动到点(0,1),第二次运动到点(1,1);
第三次运动到点(1,2),第四
解析:(1010,1011)
【分析】
仔细观察图形,找到图形变化的规律,利用规律求解即可.
【详解】
解:观察发现:
第一次运动到点(0,1),第二次运动到点(1,1);
第三次运动到点(1,2),第四次运动到点(2,2);
第五次运动到点(2,3),第六次运动到点(3,3),
…,
当n为奇数时,第n次运动到点(,),
当n为偶数时,第n次运动到点(,),
所以经过2021次运动后,动点P的坐标是(1010,1011),
故答案为:(1010,1011).
【点睛】
本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.
十七、解答题
17.(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算
解析:(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算;
(4)利用绝对值的性质化简,再进一步合并同类二次根式.
【详解】
解:(1)
=3+2+1
=6;
(2)
=2-3-3
=-4;
(3)
= ;
(4)
=
=.
故答案为(1)6;(2)-4;(3);(4).
【点睛】
本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.
十八、解答题
18.(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的
解析:(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.
十九、解答题
19.对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.
【详解】
解析:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补
【分析】
由“SAS”可证△COB≌△FOE,可得∠BCO=∠F,可证AB∥DF,可得结论.
【详解】
解:∵CF和BE相交于点O,
∴∠COB=∠EOF;(对顶角相等),
而O是CF的中点,那么CO=FO,又已知EO=BO,
∴△COB≌△FOE(SAS),
∴BC=EF,(全等三角形对应边相等),
∴∠BCO=∠F,(全等三角形的对应角相等),
∴AB∥DF,(内错角相等,两直线平行),
∴∠ACE和∠DEC互补.(两直线平行,同旁内角互补),
故答案为:对顶角相等;SAS;全等三角形的对应角相等;内错角相等,两直线平行;两直线平行,同旁内角互补.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是解题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′
解析:(1)见解析;(2)见解析;(3)10
【分析】
(1)根据点A、B、C的坐标描点,从而可得到△ABC;
(2)利用点B和B′的坐标关系可判断△ABC先向右平移4个单位,再向上平移2个单位得到△A′B′C′,利用此平移规律写出A′、C′的坐标,然后描点即可得到△A′B′C′;
(3)用一个矩形的面积分别减去三个三角形的面积去计算△A′B′C′的面积.
【详解】
解:(1)如图,△ABC为所作;
(2)如图,△A′B′C′为所作;
(3)△A′B′C′的面积=.
【点睛】
本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
二十一、解答题
21.(1);(2).
【分析】
(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;
(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.
【详解】
原式
.
解析:(1);(2).
【分析】
(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;
(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.
【详解】
原式
.
【点睛】
此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.
二十二、解答题
22.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
二十三、解答题
23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出
解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;
(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;
(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.
【详解】
解:(1)过点E作EF//AB,
∴∠B=∠BEF.
∵∠BEF+∠FED=∠BED,
∴∠B+∠FED=∠BED.
∵∠B+∠D=∠E(已知),
∴∠FED=∠D.
∴CD//EF(内错角相等,两直线平行).
∴AB//CD.
(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥GH∥CD,
∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,
∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,
即∠E+∠G=∠B+∠F+∠D.
由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,
∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
(3)如图,过点M作EF∥AB,过点N作GH∥AB,
∴∠APM+∠PME=180°,
∵EF∥AB,GH∥AB,
∴EF∥GH,
∴∠EMN+∠MNG=180°,
∴∠1+∠2+∠MNG =180°×2,
依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.
故答案为:(n-1)•180°.
【点睛】
本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
二十四、解答题
24.(1)120º,120º;(2)160;(3)
【分析】
(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;
(2)同理(1)的求法,
解析:(1)120º,120º;(2)160;(3)
【分析】
(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;
(2)同理(1)的求法,根据,, 求解即可;
(3)同理(1)的求法,根据,, 求解即可;
【详解】
解:(1)如图示,分别过点作,,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴,,
∴.
(2)如图示,分别过点作,,
∵,∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴,,
∴.
故答案为:160;
(3)同理(1)的求法
∵,∴,
∴,
∴,
∴,
∵,
∴,
又∵,
∴, ,
∴.
故答案为:.
【点睛】
本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.
二十五、解答题
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
展开阅读全文