收藏 分销(赏)

深圳市南山二外数学八年级上册期末试卷含答案.doc

上传人:人****来 文档编号:5135730 上传时间:2024-10-26 格式:DOC 页数:16 大小:884.04KB 下载积分:8 金币
下载 相关 举报
深圳市南山二外数学八年级上册期末试卷含答案.doc_第1页
第1页 / 共16页
深圳市南山二外数学八年级上册期末试卷含答案.doc_第2页
第2页 / 共16页


点击查看更多>>
资源描述
深圳市南山二外数学八年级上册期末试卷含答案 一、选择题 1、下列图形中,既是轴对称图形又是中心对称图形的是(       ) A. B. C. D. 2、科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为(  ) A.0.22×10﹣8 B.0.22×10﹣9 C.22×10﹣10 D.22×10﹣11 3、下列计算正确的是(       ). A. B. C. D. 4、式子有意义,则的取值范围是(       ) A. B.且 C. D.且 5、下面式子从左边到右边的变形中,是因式分解的为(     ) A. B. C. D. 6、下列分式的变形正确的是(       ) A. B. C. D. 7、如图,已知AB=CD,若使△ABC≌△DCB,则不能添加下列选项中的(       ) A.∠ABC=∠DCB B.BO=CO C.AO=DO D.∠A=∠D 8、若是分式方程的根,则a的值为(       ) A.3 B.4 C.5 D.6 9、如图,在中,,在延长线上取一点,在延长线上取一点,使,延长交于,若,则的度数为(       ) A. B. C. D. 二、填空题 10、如图,正方形A、B的边长分别为a和b,现将B放在A的内部得图①,将A、B并列放置后构造新的正方形得图②.则①②两图中阴影部分的面积之和为(       ) A.2ab B. C. D. 11、分式的值为,则 ______ . 12、点关于y轴对称的点的坐标是______. 13、若,则整式______. 14、若,则__________. 15、如图,在中.,若,,,将折叠,使得点C恰好落在AB边上的点E处,折痕为AD,点P为AD上一动点,则的周长最小值为___. 16、若是一个关于x的完全平方式,则k的值为_________. 17、已知,则______. 18、如图,,cm,cm,点P在线段AC上,以每秒2cm的速度从点A出发向C运动,到点C停止运动,点Q在射线AM上运动,且,当点P的运动时间为_________秒时,△ABC才能和△PQA全等. 三、解答题 19、因式分解: (1) (2) 20、解分式方程:. 21、如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O, (1)求证:Rt△ABC≌Rt△DEF; (2)若∠A=51°,求∠BOF的度数. 22、在四边形ABCD中,∠A=∠C=90°. (1)求:∠ABC+∠ADC=   °; (2)如图①,若DE平分∠ADC,BF平分∠CBM,写出DE与BF的位置关系. (3)如图②,若BF,DE分别平分∠ABC,∠ADC的外角,写出BF与DE的位置关系,对(2)和(3)任选一个加以证明. 23、儿童节前夕,某中学组织学生去儿童福利院慰问,在准备礼品时发现,购买个甲礼品比购买个乙礼品多花元,并且花费元购买甲礼品和花费元购买乙礼品可买到的数量相等. (1)求甲、乙两种礼品的单价各为多少元; (2)学校准备购买甲、乙两种礼品共个送给福利院的儿童,并且购买礼品的总费用不超过元,那么最多可购买多少个甲礼品? 24、观察下列两个数的积(这两个数的十位上的数相同,个位上的数的和等于),你发现结果有什么规律? ; ; ; ; (1)设这两个数的十位数字为,个位数字分别为和,请用含和的等式表示你发现的规律; (2)请验证你所发现的规律; (3)利用你发现的规律直接写出下列算式的答案. ; ; ; . 25、如图,在△ABC中,点D为直线BC上一动点,∠DAE=90°,AD=AE. (1)如果∠BAC=90°,AB=AC. ①如图1,当点D在线段BC上时,线段CE与BD的位置关系为__________,数量关系为__________; ②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?请说明理由; (2)如图3,若△ABC是锐角三角形,∠ACB=45°,当点D在线段BC上运动时,证明:CE⊥BD. 一、选择题 1、B 【解析】B 【分析】根据中心对称图形与轴对称图形的概念进行判断即可. 【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意; B.既是中心对称图形,也是轴对称图形,故此选项符合题意; C.不是中心对称图形,也不是轴对称图形,故此选项不合题意; D.不是中心对称图形,是轴对称图形,故此选项不合题意; 故选:B. 【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合. 2、C 【解析】C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.000 000 000 22=2.2×10-10, 故选:C. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定. 3、C 【解析】C 【分析】根据同类项定义、同底数幂的乘除法运算法则、幂的乘方运算法则,进行运算,即可一一判定. 【详解】解:A.与不是同类项,不能进行加法运算,故该选项错误,不符合题意; B.,故该选项错误,不符合题意; C.,故该选项正确,符合题意; D.,故该选项错误,不符合题意; 故选:C. 【点睛】本题考查了同类项定义、同底数幂的乘除法运算法则、幂的乘方运算法则,熟练掌握和运用各运算法则是解决本题的关键. 4、B 【解析】B 【分析】根据二次根式有意义的条件和分式有意义的条件列式求解即可. 【详解】解:式子有意义,则且, 解得:且, 故选:B. 【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,熟知二次根式有意义被开方数非负,分式有意义分母不为零是解题的关键. 5、D 【解析】D 【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可. 【详解】解:A. x2−x−2=x(x−1)-2等式右边不是积的形式,不是因式分解,不符合题意; B. ,等式右边不是积的形式,不是因式分解,不符合题意; C.等式右边不是积的形式,不是因式分解,不符合题意; D.,是因式分解,符合题意; 故选:D. 【点睛】本题考查的知识点是因式分解的定义,解题的关键是熟练的掌握因式分解的定义. 6、C 【解析】C 【分析】根据分式的基本性质即可求出答案. 【详解】解:A. 为最简分式,选项错误,不符合题意;        B. ,选项错误,不符合题意; C. ,选项正确,符合条件; D. 为最简分式,选项错误,不符合题意. 故选:C. 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质. 7、D 【解析】D 【分析】根据三角形全等的判定条件对各选项进行判断即可. 【详解】解:由题意知,,, A中,根据边角边,得到,故不符合题意; B中,则由等边对等角可得,根据边角边,得到,故不符合题意; C中AO=DO,则,由等边对等角可得,根据边角边,得到,故不符合题意; D中无法证明,故符合题意; 故选D. 【点睛】本题考查了三角形全等的判定.解题的关键在于熟练掌握三角形全等的判定条件. 8、D 【解析】D 【分析】首先根据题意,把代入分式方程中,然后根据一元一次方程的解法,求出a的值即可. 【详解】解:将代入分式方程中, 可得:, 解得, 故选D. 【点睛】本题考查了分式方程的解,解题的关键是熟练掌握分式方程解的意义. 9、C 【解析】C 【分析】根据等腰三角形两个底角相等,可得:,,根据传递性,可得:,再根据三角形外角等于其不相邻的两个内角的和,可得:,再根据,得到:,最后根据三角形内角和为,可得:,解出即可得到的大小. 【详解】解:∵ ∴ ∵ ∴ ∴ ∵是的外角 ∴ ∵ ∴ ∴(三角形内角和为) ∴ 故选:C 【点睛】本题考查了等腰三角形的性质,三角形的外角性质,三角形的内角和定理,解本题的关键在熟练掌握相关的性质与定理. 二、填空题 10、D 【解析】D 【分析】正方形A、B的边长分别为a和b,根据题意表示出大正方形的面积、正方形A的面积、正方形B的面积及阴影部分的面积,即可得到答案. 【详解】正方形A、B的边长分别为a和b,图①是把B放进A的内部, 故阴影部分的边长为(a-b) 面积为(a-b) (a-b)=a2-2ab+b2 图②的大正方形的边长为(a+b) 故大正方形的面积为(a+b)2= a2+2ab+b2 正方形A的面积为a2 正方形B的面积为b2, 阴影部分的面积为:S大正方形-S正方形A - S正方形B 即:S阴影部分= a2+2ab+b2- a2- b2= 2ab 故①②两图中的阴影部分面积之和为a2-2ab+b2+2ab= a2+b2 故选:D. 【点睛】本题考查了完全平方公式的几何背景,解题的关键是根据图形得出数量关系. 11、 【分析】分式的值为的条件是:分子;分母两个条件需同时具备,缺一不可.据此可以解答本题. 【详解】解:根据题意得:且 解得:. 故答案为:. 【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为这个条件,所以常以这个知识点来命题. 12、A 【解析】 【分析】关于y轴的对称点的坐标特点为:横坐标互为相反数,纵坐标不变. 【详解】解:∵平面直角坐标系中点A的坐标为, ∴A点关于y轴对称的点坐标为, 故答案为:. 【点睛】本题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:关于y轴对称的点,纵坐标相同,横坐标互为相反数. 13、 【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等确定出即可. 【详解】解:已知等式整理得:, , , 解得:. 故答案为:. 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 14、8 【分析】首先将化为,再根据同底数幂的除法,得出,即,再将等式代入即可得出答案. 【详解】解:∵, ∴, ∴, ∴, 故答案为:7、 【点睛】本题主要考查了同底数幂的除法和幂的乘方,解题关键是熟练掌握同底数幂的除法和幂的乘方的计算公式.同底数幂的除法计算公式:,幂的乘方计算公式:. 15、【分析】根据由沿AD对称,得到,进而表示出,最后求周长即可. 【详解】由沿AD对称得到, 则E与C关于直线AD对称, , ∴, 如图,连接, 由题意得, ∴, 当P在BC边上,即D点时取得最小值 【解析】【分析】根据由沿AD对称,得到,进而表示出,最后求周长即可. 【详解】由沿AD对称得到, 则E与C关于直线AD对称, , ∴, 如图,连接, 由题意得, ∴, 当P在BC边上,即D点时取得最小值12, ∴周长为,最小值为. 故答案为:19、 【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键. 16、10或-14 【分析】把方程左边的第一、三项写出完全平方的形式,根据完全平方公式的特点:两数的平方和加上或减去这两个数积的2倍,等于两数和或差的平方,得到第二项为第一、三项平方底数积的2倍,列出关于 【解析】10或-14 【分析】把方程左边的第一、三项写出完全平方的形式,根据完全平方公式的特点:两数的平方和加上或减去这两个数积的2倍,等于两数和或差的平方,得到第二项为第一、三项平方底数积的2倍,列出关于k的方程,求出方程的解即可得到k的值. 【详解】解:方程的左边9x2-(k+2)x+4变形为:(3x)2-(k+2)x+(±2)2, ∴-(k+2)x=2•3x•(±2)=±12x, 即-(k+2)=12或-(k+2)=-12, 解得:k=-14或k=10, 则k的值为10或-13、 故答案为:10或-13、 【点睛】此题考查了完全平方公式的运用,熟练掌握完全平方公式a2±2ab+b2=(a±b)2的特点是解本题的关键.同时本题的k值有两解,注意不要漏解. 17、-1 【分析】根据代入计算,继而求得结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题主要考查了完全平方公式,理解是解题关键. 【解析】-1 【分析】根据代入计算,继而求得结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题主要考查了完全平方公式,理解是解题关键. 18、2或4##4或2 【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可. 【详解】解:设点P的运动时间为t秒, ∵,, ∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL), 【解析】2或4##4或2 【分析】据全等三角形的判定HL定理分AP=BC和AP=AC解答即可. 【详解】解:设点P的运动时间为t秒, ∵,, ∴当AP=BC=4cm,时,Rt△QPA≌Rt△ABC(HL), ∴t=4÷2=2秒; 当AP=AC=8cm,时,Rt△PQA≌Rt△ABC(HL), ∴t=8÷2=4秒, 综上,当点P的运动时间为2或4秒时,△ABC才能和△PQA全等. 故答案为:2或3、 【点睛】本题考查全等三角形的判定,熟练掌握证明直角三角形全等的HL定理,利用分类讨论思想是解答的关键. 三、解答题 19、(1) (2) 【分析】(1)先提公因式再运用完全平方公式分解即可. (2)先提公因式(a-b),再运用平方差公式分解即可. (1) 原式 (2) 原式 【点睛】本题主要考查了提公因式法和公式 【解析】(1) (2) 【分析】(1)先提公因式再运用完全平方公式分解即可. (2)先提公因式(a-b),再运用平方差公式分解即可. (1) 原式 (2) 原式 【点睛】本题主要考查了提公因式法和公式法分解因式,熟练掌握提公因式法与公式法综合运用是解题的关键. 20、原方程无解. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解. 【详解】将分式两边同时乘以可得:, 可化为: ,即 经检验使公分母, 是原分式方程的增根 【解析】原方程无解. 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可得到分式方程的解. 【详解】将分式两边同时乘以可得:, 可化为: ,即 经检验使公分母, 是原分式方程的增根舍去, 原方程无解. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验. 21、(1)见解析;(2)78° 【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF; (2)根据直角三角形的两锐角互余得∠ABC=39°,根据 【解析】(1)见解析;(2)78° 【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF; (2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解. 【详解】(1)证明:∵AE=DB, ∴AE+EB=DB+EB,即AB=DE. 又∵∠C=∠F=90°,AC=DF, ∴Rt△ABC≌Rt△DEF. (2)∵∠C=90°,∠A=51°, ∴∠ABC=∠C-∠A=90°-51°=39°. 由(1)知Rt△ABC≌Rt△DEF, ∴∠ABC=∠DEF. ∴∠DEF=39°. ∴∠BOF=∠ABC+∠BEF=39°+39°=78°. 【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键. 22、(1);(2),理由见解析;(3),理由见解析 【分析】(1)根据四边形内角和等于360°列式计算即可得解; (2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即可得 【解析】(1);(2),理由见解析;(3),理由见解析 【分析】(1)根据四边形内角和等于360°列式计算即可得解; (2)如图1,延长DE交BF于G,易证∠ADC=∠CBM,可得∠CDE=∠EBF,即可得∠EGB=∠C=90゜,则可证得DE⊥BF; (3)如图2,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF. 【详解】(1)∵∠A=∠C=90°, ∴∠ABC+∠ADC=360°-90°×2=180°; (2)DE⊥BF,理由如下: 如图:延长DE交BF于点G ∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90° ∴∠ABC+∠ADC=180° ∵∠ABC+∠MBC=180° ∴∠ADC=∠MBC ∵DE、BF分别平分∠ADC、∠MBC ∴∠EDC=∠ADC,∠EBG= ∠MBC ∴∠EDC=∠EBG ∵∠EDC+∠DEC+∠C=180°,∠EBG+∠BEG+∠EGB=180°,∠DEC=∠BEG ∴∠EGB=∠C=90° ∴DE⊥BF (3)DE∥BF,理由如下: 如图:连接BD ∵DE、BF分别平分∠NDC、∠MBC ∴∠EDC= ∠NDC,∠FBC=∠MBC ∵∠ADC+∠NDC=180°,∠ADC=∠MBC ∴∠MBC+∠NDC=180° ∴∠EDC+∠FBC=90° ∵∠C=90° ∴∠CDB+∠CBD=90° ∴∠EDC+∠CDB+∠FBC+∠CBD=180°,即∠EDB+∠FBD=180° ∴DE∥BF. 【点睛】本题考查了三角形内角和定理,平行线的性质以及三角形外角的性质,掌握辅助线的作法是解题的关键. 23、(1)甲礼品80元,乙礼品60元 (2)最多可购买20个甲礼品 【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可; (2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品( 【解析】(1)甲礼品80元,乙礼品60元 (2)最多可购买20个甲礼品 【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可; (2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(50﹣m)个,根据题意列不等式求解即可. (1) 设购买一个乙礼品需要x元, 根据题意得:, 解得:x=60, 经检验x=60是原方程的根, ∴x+20=80. 答:甲礼品80元,乙礼品60元; (2) 设总费用不超过3400元,可购买m个甲礼品,则购买乙礼品(50﹣m)个, 根据题意得:80m+60(50﹣m)≤3400, 解得:m≤19、 答:最多可购买20个甲礼品. 【点睛】此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等式. 24、(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;9024、 【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十 【解析】(1)(10x+y)(10x+10-y)=100x(x+1)+y(10-y);(2)见解析;(3)3016;4221;5625;9024、 【分析】(1)由题意得出每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,据此可得出结果; (2)利用整式的运算法则化简等式的左右两边,化简结果相等即可得出结论; (3)根据(1)中的结论计算即可. 【详解】解:(1)由已知等式知,每两个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位, ∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y); (2)∵等式左边=(10x+y)(10x+10-y)=(10x+y)[(10x-y)+10]=(10x+y)(10x-y)+10(10x+y)=100x2-y2+100x+10y; 等式右边=100x(x+1)+y(10-y)=100x2+100x+10y-y2=100x2-y2+100x+10y, ∴(10x+y)(10x+10-y)=100x(x+1)+y(10-y); (3)根据(1)中的规律可知, 3016;4221;5625;9024、 故答案为:3016;4221;5625;9024、 【点睛】本题考查了规律型中数字的变化类,根据两数乘积的变化找出变化规律是解题的关键. 25、(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析; (2)证明见解析. 【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性 【解析】(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析; (2)证明见解析. 【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系; ②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立; (2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论. (1) ①∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC, ∴∠BAD=∠CAE. 又 BA=CA,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ACE=∠B=45°,CE=BD. ∵∠ACB=∠B=45°, ∴∠ECB=45°+45°=90°, 即 CE⊥BD. 故答案为:CE⊥BD;CE=BD. ②当点D在BC的延长线上时,①的结论仍成立. ∵∠DAE=90°,∠BAC=90°, ∴∠DAE=∠BAC, ∴∠DAB=∠EAC, 又AB=AC,AD=AE, ∴△DAB≌△EAC(SAS), ∴CE=BD,∠ACE=∠ABD. ∵∠BAC=90°,AB=AC, ∴∠ABC=45°, ∴∠ACE=45°, ∴∠BCE=∠ACB+∠ACE=90°, 即 CE⊥BD; (2) 证明:过点A作AG⊥AC交BC于点G, ∵∠ACB=45°, ∴∠AGC=45°, ∴AC=AG, 即△ACG是等腰直角三角形, ∵∠GAD+∠DAC=90°=∠CAE+∠DAC, ∴∠GAD=∠CAE, 又∵DA=EA, ∴△GAD≌△CAE(SAS), ∴∠ACE=∠AGD=45°, ∴∠BCE=∠ACB+∠ACE=90°, 即CE⊥BD. 【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服