资源描述
2021年陕西省中考数学试卷
A卷
第一部分(选择题共24分)
一、选择题(共8小题,每小题3分,计24分每小题只有一个选项是符合题意的)
1. 计算:( )
A. 1 B. -1 C. 6 D. -6
【答案】D
2. 下列图形中,是轴对称图形的是( )
A. B. C. D.
【答案】B
3. 计算:( )
A. B. C. D.
【答案】A
4. 如图,点D、E分别在线段、上,连接、.若,,,则的大小为( )
A. 60° B. 70° C. 75° D. 85°
【答案】B
5. 如图,在菱形中,,连接、,则值为( )
A. B. C. D.
【答案】D
6. 在平面直角坐标系中,若将一次函数的图象向左平移3个单位后,得到个正比例函数的图象,则m的值为( )
A. -5 B. 5 C. -6 D. 6
【答案】A
7. 如图,、、、是四根长度均为5cm的火柴棒,点A、C、E共线.若,,则线段的长度为( )
A. 6 cm B. 7 cm C. D. 8cm
【答案】D
8. 下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
…
-2
0
1
3
…
…
6
-4
-6
-4
…
下列各选项中,正确的是
A. 这个函数的图象开口向下
B. 这个函数的图象与x轴无交点
C. 这个函数最小值小于-6
D. 当时,y的值随x值的增大而增大
【答案】C
第二部分(非选择题 共96分)
二、填空题(共5小题,每小题3分,计15分)
9. 分解因式:______.
【答案】
10. 正九边形一个内角的度数为______.
【答案】140°
11. 幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.
-1
-6
1
0
a
-4
-5
2
-3
【答案】-2
12. 若,是反比例函数图象上的两点,则、的大小关系是______(填“>”、“=”或“<”)
【答案】<
13. 如图,正方形的边长为4,的半径为1.若在正方形内平移(可以与该正方形的边相切),则点A到上的点的距离的最大值为______.
【答案】
三、解答题(共13小题,计81分解答应写出过程)
14. 计算:.
【答案】
15. 解不等式组:
【答案】
16. 解方程:.
【答案】
17. 如图,已知直线,直线分别与、交于点、.请用尺规作图法,在线段上求作点,使点到、的距离相等.(保留作图痕迹,不写作法)
【答案】见解析
18. 如图,,,点在上,且.求证:.
【答案】见解析
19. 一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.
【答案】这种服装每件的标价是110元
20. 从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.
【答案】(1);(2)
21. 一座吊桥的钢索立柱两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索的长度,他们测得为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现恰好为45°,点B与点C之间的距离约为16m.已知点B、C、D共线,.求钢索的长度.(结果保留根号)
【答案】
22. 今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:
根据以上信息,回答下列问题:
(1)这60天的日平均气温的中位数为______,众数为______;
(2)求这60天的日平均气温的平均数;
(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
【答案】(1)19.5,19;(2)20;(3)20天.
23. 在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离与时间之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______;
(2)求的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
【答案】(1)1;(2);(3)
24. 如图,是的直径,点E、F在上,且,连接、,过点作的切线,分别与、的延长线交于点C、D.
(1)求证:;
(2)若,,求线段的长.
【答案】(1)见解析;(2)
25. 已知抛物线与x轴交于点A、B(其中A在点B左侧),与y轴交于点C.
(1)求点B、C坐标;
(2)设点与点C关于该抛物线的对称轴对称在y轴上是否存在点P,使与相似且与是对应边?若存在,求点P的坐标;若不存在,请说明理由.
【答案】(1),;(2)存在,或.
26. 问题提出
(1)如图1,在中,,,,E是中点,点F在上且求四边形的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上建一个五边形河畔公园按设计要求,要在五边形河畔公园内挖一个四边形人工湖,使点O、P、M、N分别在边、、、上,且满足,.已知五边形中,,,,,.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖?若存在,求四边形面积的最小值及这时点到点的距离;若不存在,请说明理由.
【答案】(1);(2)存在符合设计要求的四边形面积的最小值为,这时,点N到点A的距离为.
展开阅读全文