收藏 分销(赏)

2011年辽宁省大连市中考数学试卷及解析.doc

上传人:Fis****915 文档编号:493271 上传时间:2023-10-19 格式:DOC 页数:22 大小:352.50KB
下载 相关 举报
2011年辽宁省大连市中考数学试卷及解析.doc_第1页
第1页 / 共22页
2011年辽宁省大连市中考数学试卷及解析.doc_第2页
第2页 / 共22页
2011年辽宁省大连市中考数学试卷及解析.doc_第3页
第3页 / 共22页
2011年辽宁省大连市中考数学试卷及解析.doc_第4页
第4页 / 共22页
2011年辽宁省大连市中考数学试卷及解析.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、2011年辽宁省大连市中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1(3分)(2011大连)的相反数是()A2BCD22(3分)(2011大连)在平面直角坐标系中,点P(3,2)所在象限为()A第一象限B第二象限C第三象限D第四象限3(3分)(2011大连)实数的整数部分是()A2B3C4D54(3分)(2011大连)如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是()ABCD5(3分)(2011大连)不等式组的解集是()A1x2B1x2C1x2D1x26(3分)(2011大连)下列事件是必然事件的是()A抛掷一次硬币,

2、正面朝上B任意购买一张电影票,座位号恰好是“7排8号”C某射击运动员射击一次,命中靶心D13名同学中,至少有两名同学出生的月份相同7(3分)(2011大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则()A甲比乙的产量稳定B乙比甲的产量稳定C甲、乙的产量一样稳定D无法确定哪一品种的产量更稳定8(3分)(2011大连)如图,矩形ABCD中,AB=4,BC=5,AF平分DAE,EFAE,则CF等于()AB1CD2二、填空题(本题共8小题,每小题3分,共24分)9(3分)(2011大连)如图,直线

3、ab,1=115,则2=10(3分)(2011大连)在平面直角坐标系中,将点(2,3)向上平移3个单位,则平移后的点的坐标为11(3分)(2011大连)化简:=12(3分)(2011大连)已知反比例函数的图象经过点(3,4),则这个函数的解析式为13(3分)(2011大连)某家用电器经过两次降价,每台零售价由350元下降到299元若两次降价的百分率相同,设这个百分率为x,则可列出关于x的方程为14(3分)(2011大连)一个不透明的袋子中有2个红球、3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红色球的概率为15(3分)(2011大连)如图,等腰直角三角形ABC的直角

4、边AB的长为6cm,将ABC绕点A逆时针旋转15后得到ABC,则图中阴影部分面积等于cm216(3分)(2011大连)如图,抛物线y=x2+2x+m(m0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧当x=x22时,y0(填“”“=”或“”号)三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)17(9分)(2011大连)计算:18(9分)(2011大连)解方程:19(9分)(2011大连)如图,等腰梯形ABCD中,ADBC,M是BC的中点,求证:DAM=ADM20(12分)(2011大连)如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的

5、F处,由E点观测到旗杆顶部A的仰角为52、底部B的仰角为45,小明的观测点与地面的距离EF为1.6m(1)求建筑物BC的高度;(2)求旗杆AB的高度(结果精确到0.1m参考数据:1.41,sin520.79,tan521.28)四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21(9分)(2011大连)某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示)根据图表解答下列问题:(1)a=,b=;(2)这个样本数据的中位数落在第组;(3)若七年级男生个人一分钟跳

6、绳次数x130时成绩为优秀,则从这50名男生中任意选一人,跳绳成绩为优秀的概率为多少?(4)若该校七年级入学时男生共有150人,请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数组别次数x频数(人数)第1组50x704第2组70x90a第3组90x11018第4组110x130b第5组130x1504第6组150x170222(9分)(2011大连)如图,AB是O的直径,CD是O的切线,切点为C,BECD,垂足为E,连接AC、BC(1)ABC的形状是,理由是;(2)求证:BC平分ABE;(3)若A=60,OA=2,求CE的长23(10分)(2011大连)如图1,某容器由A、B、C三个长方体

7、组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是容器容积的(容器各面的厚度忽略不计)现以速度v(单位:cm3/s)均匀地向容器注水,直至注满为止图2是注水全过程中容器的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象(1)在注水过程中,注满A所用时间为s,再注满B又用了s;(2)求A的高度hA及注水的速度v;(3)求注满容器所需时间及容器的高度五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24(11分)(2011大连)如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(1,0)、(4,0)P是线段OC上的一动点(

8、点P与点O、C不重合),过点P的直线x=t与AC相交于点Q设四边形ABPQ关于直线x=t的对称的图形与QPC重叠部分的面积为S(1)点B关于直线x=t的对称点B的坐标为;(2)求S与t的函数关系式25(12分)(2011大连)在ABC中,A=90,点D在线段BC上,EDB=C,BEDE,垂足为E,DE与AB相交于点F(1)当AB=AC时,(如图1),EBF=;探究线段BE与FD的数量关系,并加以证明;(2)当AB=kAC时(如图2),求的值(用含k的式子表示)26(12分)(2011大连)如图,抛物线y=ax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P

9、、与直线BC相交于点M,连接PB(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q,使QMB与PMB的面积相等?若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使RPM与RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由2011年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1(3分)考点:相反数菁优网版权所有专题:应用题分析:根据相反数的意义解答即可解答:解:由相反数的意义得:的相反数是故选C点评:本题主要考查相反数的定义:只有符号相反的两

10、个数互为相反数0的相反数是其本身2(3分)考点:点的坐标菁优网版权所有分析:根据点在第二象限的坐标特点即可解答解答:解:点的横坐标30,纵坐标20,这个点在第二象限故选:B点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)3(3分)考点:估算无理数的大小菁优网版权所有专题:探究型分析:先估算出的值,再进行解答即可解答:解:3.16,的整数部分是3故选B点评:本题考查的是估算无理数的大小,3.16是需要识记的内容4(3分)考点:简单组合体的三视图菁优网版权所有专题:应用题分析:细心观察图中几何体中正方体摆放的位置,

11、根据左视图是从左面看到的图形判定则可解答:解:从左边看是竖着叠放的2个正方形,故选C点评:本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中5(3分)考点:解一元一次不等式组;不等式的性质;解一元一次不等式菁优网版权所有专题:计算题分析:求出不等式的解集,再根据找不等式组解集得规律求出即可解答:解:,由得:x2由得:x1不等式组的解集是1x2,故选A点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键6(3分)考点:随机事件菁优网版权所有专题:分类讨论分析:必然事件就是一定发生的事件,即

12、发生的概率是1的事件据此判断即可解得解答:解:A、抛掷一次硬币,正面朝上,是可能事件,故本选项错误;B、任意购买一张电影票,座位号恰好是“7排8号”,是可能事件,故本选项错误;C、某射击运动员射击一次,命中靶心,是可能事件,故本选项错误;D、13名同学中,至少有两名同学出生的月份相同,正确故选D点评:本题主要考查理解必然事件、不可能事件、随机事件的概念用到的知识点为:确定事件包括必然事件和不可能事件必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7(3分)考点:方差菁优网版权所有专题:压轴题分析:由

13、s甲2=0.002、s乙2=0.03,可得到s甲2s乙2,根据方差的意义得到甲的波动小,比较稳定解答:解:s甲2=0.002、s乙2=0.03,s甲2s乙2,甲比乙的产量稳定故选A点评:本题考查了方差的意义:方差反映一组数据在其平均数左右的波动大小,方差越大,波动就越大,越不稳定,方差越小,波动越小,越稳定8(3分)考点:相似三角形的判定与性质;解一元一次方程;角平分线的性质;勾股定理;矩形的性质菁优网版权所有专题:计算题;压轴题分析:根据矩形的性质得到AD=BC=5,D=B=C=90,根据三角形的角平分线的性质得到DF=EF,由勾股定理求出AE、BE,证ABEECF,得出=,代入求出即可解答

14、:解:四边形ABCD是矩形,AD=BC=5,D=B=C=90,AF平分DAE,EFAE,DF=EF,由勾股定理得:AE2=AF2EF2,AD2=AF2DF2,AE=AD=5,在ABE中由勾股定理得:BE=3,EC=53=2,BAE+AEB=90,AEB+FEC=90,BAE=FEC,ABEECF,=,=,CF=故选C点评:本题主要考查对矩形的性质,勾股定理,三角形的角平分线的性质,全等三角形的性质和判定等知识点的理解和掌握,求出AE、BE的长和证出ABEECF是解此题的关键二、填空题(本题共8小题,每小题3分,共24分)9(3分)考点:平行线的性质菁优网版权所有分析:由对顶角相等,可求得3的度

15、数,又由ab,根据两直线平行,同旁内角互补,即可求得2的度数解答:解:1=115,3=1=115,ab,2+3=180,2=1803=180115=65故答案为:65点评:此题考查了平行线的性质题目比较简单,解题的关键是注意数形结合思想的应用10(3分)考点:坐标与图形变化-平移菁优网版权所有专题:数形结合分析:根据点的平移规律,向上平移3个单位,横坐标不变,纵坐标加3,即可得到答案解答:解:点(2,3)向上平移3个单位,平移后的点的坐标为:(2,3+3),即(2,0),故答案为:(2,0)点评:此题主要考查了点的平移规律,关键掌握好:左右移,横减加,纵不变;上下移,纵加减,横不变11(3分)

16、考点:分式的混合运算菁优网版权所有专题:计算题分析:本题需根据分式的混合运算的顺序,先对每一项进行整理,再进行约分,即可求出结果解答:解:=a1故答案为:a1点评:本题主要考查了分式的混合运算,在解题时要注意运算顺序和结果的符号是本题的关键12(3分)考点:待定系数法求反比例函数解析式菁优网版权所有分析:根据待定系数法,把点(3,4)代入y=中,即可得到k的值,也就得到了答案解答:解:图象经过点(3,4),k=xy=3(4)=12,这个函数的解析式为:y=故答案为:y=点评:此题主要考查了用待定系数法求反比例函数的解析式,是中学阶段的重点,此题比较简单,13(3分)考点:由实际问题抽象出一元二

17、次方程菁优网版权所有专题:增长率问题分析:设家用电器平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1降价的百分率),则第一次降价后的价格是100(1x),第二次后的价格是100(1x)2,据此即可列方程求解解答:解:设降价的百分率为x,根据题意列方程得350(1x)2=299故答案为:350(1x)2=299点评:考查了由实际问题抽象出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键注意判断所求的解是否符合题意,舍去不合题意的解14(3分)考点:概率公式菁优网版权所有专题:计算题分析:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就

18、是其发生的概率解答:解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,从袋子中随机摸出一个球,它是红色球的概率为 ,故答案为点评:题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15(3分)考点:旋转的性质;解直角三角形菁优网版权所有专题:计算题;压轴题分析:将ABC绕点A逆时针旋转15,得到BAD=4515=30,利用三角函数即可求出BD的长,然后根据直角三角形的面积公式即可求出阴影部分面积解答:解:BAD=BACDAC=4515=30,BD=ABtan30=6=2(cm),SABD=62=6(cm

19、2)故答案为:6点评:此题考查了旋转的性质和解直角三角形的相关计算,找到图中的特殊角BAD是解题的关键16(3分)考点:抛物线与x轴的交点菁优网版权所有专题:压轴题;数形结合分析:由二次函数根与系数的关系求得关系式,求得m小于0,当x=x22时,从而求得y小于0解答:解:抛物线y=x2+2x+m(m0)与x轴相交于点A(x1,0)、B(x2,0),x1+x2=2,x1x2=m0,x10,x20,x1+x2=2x1=2x2x=x10y0故答案为点评:本题考查了二次函数根与系数的关系,由根与系数的关系得到m小于0,并能求出x=x22小于0,结合图象从而求得y值的小于0三、解答题(本题共4小题,其中

20、17、18、19题各9分,20题12分,共39分)17(9分)考点:二次根式的混合运算;负整数指数幂菁优网版权所有专题:计算题分析:本题需先根据二次根式的混合运算顺序和乘法公式分别进行计算,再把所得结果合并即可解答:解:=2+32+16=2点评:本题主要考查了二次根式的混合运算,在解题时要注意运算顺序和乘法公式的应用是本题的关键18(9分)考点:解分式方程菁优网版权所有专题:计算题分析:观察两个分母可知,公分母为x2,去分母,转化为整式方程求解,结果要检验解答:解:去分母,得5+(x2)=(x1),去括号,得5+x2=x+1,移项,得x+x=1+25,合并,得2x=2,化系数为1,得x=1,检

21、验:当x=1时,x20,原方程的解为x=1点评:本题考查了分式方程的解法(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根19(9分)考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的性质菁优网版权所有专题:证明题;压轴题分析:根据等腰梯形的性质得出B=C,AB=DC,根据SAS证出ABMDCM,得到AM=DM即可解答:证明:等腰梯形ABCD中,ADBC,B=C,AB=DC,M是BC的中点,BM=CM,ABMDCM,AM=DM,DAM=ADM点评:本题主要考查对等腰梯形的性质,全等三角形的性质和判定,等腰三角形的性质等知识点的理解和掌握

22、,求出AM=DM是解此题的关键20(12分)考点:解直角三角形的应用-仰角俯角问题菁优网版权所有专题:压轴题分析:(1)先过点E作EDBC于D,由已知底部B的仰角为45得BD=ED=FC=12,DC=EF=1.6,从而求出BC(2)由已知由E点观测到旗杆顶部A的仰角为52可求出AD,则AB=ADBD解答:解:(1)过点E作EDBC于D,根据题意得:EFFC,EDFC,四边形CDEF是矩形,已知底部B的仰角为45即BED=45,EBD=45,BD=ED=FC=12,BC=BD+DC=BD+EF=12+1.6=13.6,答:建筑物BC的高度为13.6m(2)已知由E点观测到旗杆顶部A的仰角为52,

23、即AED=52,AD=EDtan52121.2815.4,AB=ADBD=15.412=3.4答:旗杆AB的高度约为3.4m点评:此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21(9分)考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数菁优网版权所有分析:(1)根据频数分布直方图可直接得到答案,利用50减去落在各小组的频数即可得到b;(2)中位数是把所有数据从小到大排列起来位置处于中间的数,两个数时,取中间两数的平均数;(3

24、)概率=(4)总人数概率=七年级男生成绩为优秀的人数解答:解:(1)根据频数分布直方图知:a=10,b=504101842=12;(2)中位数是位置处于中间的数,共50个数据,处于中间的是第25,26个,正好落在第3小组(3)优秀的概率为:=;(4)150=18点评:此题主要考查了概率,中位数,以及学生的识图能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解答22(9分)考点:切线的性质;圆周角定理;解直角三角形菁优网版权所有专题:几何综合题;压轴题分析:(1)ABC是直角三角形,直径所对的圆周角是直角(2)由ACB是直角,BECD,且OC=OB,可证BC平分A

25、BE;(3)A=60,可得ABC=CBE=30,OA=2,所以,BC=2,所以在直角三角形CBE中,CE=BC=解答:(1)解:根据圆周角定理,可得,ABC是直角三角形,因为直径所对的圆周角是直角(2)证明:ACB是直角,BECD,CD是O的切线,切点为C,OCDE,COBE,OCB=EBC,又且OC=OB,OCB=OBC;OBC=EBC,BC平分ABE;(3)解:AB是O的直径,ACB=90,A=60,OA=2,AB=4,BC=ABsin60=4=2,CE=BC=故答案为:(1)直角三角形;直径所对的圆周角是直角(3)CE等于点评:本题考查了直角三角形、切线及圆周角的性质定理,本题综合性较强

26、,熟记且能运用是解答的关键23(10分)考点:一次函数的应用菁优网版权所有专题:压轴题分析:(1)看函数图象可得答案;(2)根据函数图象所给时间和高度列出一个含有hA及v的二元一次方程组,解此方程组可得答案;(3)根据C的容积和总容积的关系求出C的容积,再求C的高度及注满C的时间,就可以求出注满容器所需时间及容器的高度解答:解:(1)看函数图象可知,注满A所用时间为10s,再注满B又用了 8s;(2)根据题意和函数图象得,解得;答:A的高度hA是4cm,注水的速度v是10cm3/s;(3)设C的容积为ycm3,则有,4y=10v+8v+y,将v=10代入计算得y=60,那么容器C的高度为:60

27、5=12(cm),故这个容器的高度是:12+12=24(cm),B的注水时间为8s,底面积为10cm2,v=10cm3/s,B的高度=81010=8(cm),注满C的时间是:60v=6010=6(s),故注满这个容器的时间为:10+8+6=24(s)答:注满容器所需时间为24s,容器的高度为24cm点评:本题考查了识别函数图象的能力,是一道较为简单的题,观察图象提供的信息,再分析高度、时间和容积的关系即可找到解题关键五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24(11分)考点:相似三角形的判定与性质;坐标与图形变化-对称;解直角三角形菁优网版权所有专题:计算题

28、分析:(1)根据点B和B关于x=t对称,则设B横坐标为a,根据B、B的横坐标之和的一半为对称轴即可解答;(2)根据1.5t4时和0t1.5时图形的不同,分两种情况得出重合图形的面积表达式,即为S与t的表达式解答:解:(1)设B横坐标为a,则=t,解得a=2t+1故B点坐标为(2t+1,0)(2)如图,当1.5t4时,重合部分为三角形,CPQCOA,即,则PQ=于是S=(4t)=(1.5t4),如图,0t1.5时,重合部分为四边形,A点坐标为(0,2),A点坐标为(2t,2),又B点坐标为(2t+1,0),设直线AB解析式为y=kx+b,则将A(2t,2),和B(2t+1,0)分别代入解析式得,

29、解得k=2,b=2+4t解析式为y=2x+(2+4t),设直线AC解析式为y=mx+n,将A(0,2),C(4,0)分别代入解析式得,解得4m+2=0,m=解析式为y=x+2将y=x+2和y=2x+(2+4t)组成方程组得得,D点坐标为(,)由于B坐标为(2t+1,0),C点坐标为(4,0),故BC=4(2t+1)=32t,S=S四边形QPBD=SQPCSDBC=+2t+1(0t1.5)点评:此题以动点问题的形式考查了相似三角形的性质及待定系数法求函数解析式,要充分结合图形特征,找到图中的重合部分,并根据不同情况进行解答25(12分)考点:相似三角形的判定与性质;角平分线的性质;等腰直角三角形

30、菁优网版权所有专题:计算题;压轴题分析:(1)根据题意可判断ABC为等腰直角三角形,据此即可推断C=45,进而可知EDB=22.5然后求出EBF的度数根据题意证明BEFDEB,然后利用相似三角形的性质,得到BE与FD的数量关系(2)首先证明GBNFDN,利用三角形相似的性质得到BE与FD的数量关系解答:解:(1)AB=ACA=90ABC=C=45EDB=CEDB=22.5BEDEEBD=67.5EBF=67.545=22.5在BEF和DEB中BED=FEB=90,EBF=EDB=22.5BEFDEB如图:作BG平分ABC,交DE于G点,BG=GD,BEG是等腰直角三角形设EF=x,BE=y,则

31、:BG=GD=yFD=y+yxBEFDEB=即:=得:x=(1)yFD=y+y(1)y=2yFD=2BE(2)过点D作DGAC,交BE的延长线于点G,与BA交于点N,DGAC,GDB=C,EDB=C,EDB=GDE,BEDE,BED=DEG,DE=DE,DEGDEB,BE=GB,BND=GNB=90,EBF=NDF,GBNFDN,=,即=,又DGAC,BNDBAC,=,即=k,=点评:本题考查的是相似三角形的判定与性质,(1)利用等腰直角三角形的性质进行判定和计算(2)结合图形利用三角函数和相似三角形进行计算求出线段间的关系26(12分)考点:二次函数综合题菁优网版权所有专题:压轴题分析:(1

32、)把三点坐标代入函数式,列式求得a,b,c的值,即求出解析式;(2)求得抛物线顶点P,从直线BC的斜率算起,设过点P的直线,解得直线代入抛物线解析式解得点Q;(3)求得点M,由点M,P的纵坐标关系可知,点R存在,y=2代入解得解答:解:(1)把三点代入抛物线解析式,即得:,所以二次函数式为y=x2+2x+3;(2)由y=x2+2x+3=(x1)2+4,则顶点P(1,4),由B,C两点坐标可求直线BC解析式为y=x+3,设过点P与直线BC平行的直线为:y=x+b,将点P(1,4)代入,得y=x+5,则过点P与直线BC平行的直线与抛物线联立,有则存在点Q,x2+2x+3=x+5,即x23x+2=0

33、,解得x=1或x=2,代入直线则得点(1,4)或(2,3),已知点P(1,4),所以点Q(2,3),由对称轴及直线BC解析式可知M(1,2),PM=2,设过P(1,0)且与BC平行的直线为y=x+f,将P代入,得y=x+1,联立,解得或,Q(2,3)或(,)或Q(,);(3)由题意求得直线BC代入x=1,则y=2,M(1,2),由点M,P的坐标可知:点R存在,即过点M平行于x轴的直线,则代入y=2,则x2+2x+3=2,整理得x22x1=0,解得x=1(在对称轴的左侧,舍去),x=1,即点R(1)点评:本题考查了二次函数的综合运用,考查到了三点确定二次函数解析式,两直线相等,即斜率相等,两三角形面积相等,由同底等高;点M的纵坐标的长度是点P的一半,从而解得本题逻辑思维性强,需要耐心和细心,是道好题第22页(共22页)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服