1、内蒙古呼和浩特市2020年中考数学试题注意事项:1考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置2考生要将答案写在答题卡上,在试卷上答题一律无效考试结束后,本试卷和答题卡一并交回3本试卷考试时间120分钟一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )A. B. C. D. 2. 2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:,0,则这5天他共背诵汉语成语( )A. 38
2、个B. 36个C. 34个D. 30个3. 下列运算正确的是( )A. B. C. D. 4. 已知电流在一定时间段内正常通过电子元件“”概率是0.5;则在一定时间段内,由该元件组成的图示电路A、B之间,电流能够正常通过的概率是( )A. 0.75B. 0.625C. 0.5D. 0.255. 中国古代数学著作算法统宗中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( )A. 102里B. 126里C.
3、 192里D. 198里6. 已知二次函数,当x取互为相反数的任意两个实数值时,对应的函数值y总相等,则关于x的一元二次方程的两根之积为( )A. 0B. C. D. 7. 关于二次函数,下列说法错误的是( )A. 若将图象向上平移10个单位,再向左平移2个单位后过点,则B. 当时,y有最小值C. 对应的函数值比最小值大7D. 当时,图象与x轴有两个不同的交点8. 命题设的三个内角为A、B、C且,则、中,最多有一个锐角;顺次连接菱形各边中点所得的四边形是矩形;从11个评委分别给出某选手的不同原始评分中,去掉1个最高分、1个最低分,剩下的9个评分与11个原始评分相比,中位数和方差都不发生变化其中
4、错误命题的个数为( )A. 0个B. 1个C. 2个D. 3个9. 在同一坐标系中,若正比例函数与反比例函数的图象没有交点,则与的关系,下面四种表述;或;正确的有( )A. 4个B. 3个C. 2个D. 1个10. 如图,把某矩形纸片沿,折叠(点E、H在边上,点F,G在边上),使点B和点C落在边上同一点P处,A点的对称点为、D点的对称点为,若,为8,的面积为2,则矩形的长为( )A. B. C. D. 二、填空题(本大题共6小题,本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11. 如图,中,为的中点,以为圆心,长为半径画一弧交于点,若,则扇形的面积为_12. 一个几何体的三视图如
5、图所示,则该几何体的表面积为_13. 分式与的最简公分母是_,方程的解是_14. 公司以3元/的成本价购进柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为_(精确到0.1);从而可大约每千克柑橘的实际售价为_元时(精确到0.1),可获得12000元利润柑橘总质量损坏柑橘质量柑橘损坏的频率(精确到0.001)25024.750.09930030.930.10335035.120.10045044.540.0995005
6、0.620.10115. “书法艺求课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为_,并可推断出5月30日应该是星期几_16. 已知为O的直径且长为,为O上异于A,B的点,若与过点C的O的切线互相垂直,垂足为D若等腰三角形的顶角为120度,则;若为正三角形,则;若等腰三角形的对称轴经过点D,则;无论点C在何处,将沿折叠,点D一定落在直径上,其中正确结论的序号为_三、解答题(本大题共8小题,解答应写出文字
7、说明,证明过程或演算步骤)17. (1)计算:;(2)已知m是小于0的常数,解关于x的不等式组:18. 如图,正方形,G是边上任意一点(不与B、C重合),于点E,且交于点F(1)求证:;(2)四边形是否可能是平行四边形,如果可能请指出此时点G的位置,如不可能请说明理由19. 如图,一艘船由A港沿北偏东65方向航行到B港,然后再沿北偏西42方向航行至C港,已知C港A港北偏东20方向(1)直接写出的度数;(2)求A、C两港之间距离(结果用含非特殊角的三角函数及根式表示即可)20. 已知自变量x与因变量的对应关系如下表呈现的规律x01212111098(1)直接写出函数解析式及其图象与x轴和y轴的交
8、点M,N的坐标;(2)设反比列函数的图象与(1)求得的函数的图象交于A,B两点,O为坐标原点且,求反比例函数解析式;已知,点与分别在反比例函数与(1)求得的函数的图象上,直接写出与的大小关系21. 为了发展学生的健康情感,学校开展多项体育活动比赛,促进学生加强体育锻炼,注重增强体质,从全校2100名学生60秒跳绳比赛成绩中,随机抽取60名同学的成绩,通过分组整理数据得到下面的样本频数分布表跳绳的次数频数461122104(1)已知样本中最小的数是60,最大的数是198,组距是20,请你将该表左侧的每组数据补充完整;(2)估计全校学生60秒跳绳成绩能达到最好一组成绩的人数;(3)若以各组组中值代
9、表各组的实际数据,求出样本平均数(结果保留整数)及众数;分别写出用样本平均数和众数估计全校学生60秒跳绳成绩得到的推断性结论22. “通过等价变换,化陌生为熟悉,化未知为已知”是数学学习中解决问题的基本思维方式,例如:解方程,就可以利用该思维方式,设,将原方程转化为:这个熟悉的关于y的一元二次方程,解出y,再求x,这种方法又叫“换元法”请你用这种思维方式和换元法解决下面的问题已知实数x,y满足,求的值23. 某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现者名的黄金分割比如图,圆内接正五边形,圆心为O,与交于点H,、与分别交于点M、N根据圆与正五边形的对称性,只对
10、部分图形进行研究(其它可同理得出)(1)求证:是等腰三角形且底角等于36,并直接说出形状;(2)求证:,且其比值;(3)由对称性知,由(1)(2)可知也是一个黄金分割数,据此求的值24. 已知某厂以小时/千克的速度匀速生产某种产品(生产条件要求),且每小时可获得利润元(1)某人将每小时获得的利润设为y元,发现时,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。试卷地址:在组卷网浏览本卷组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。 学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。钱老师QQ:537008204曹老师QQ:713000635