1、一、解答题1(了解概念)在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”(理解运用)在平面直角坐标系中,(1)线段的“勾股距” ;(2)若点在第三象限,且,求并判断是否为“等距三角形”(拓展提升)(3)若点在轴上,是“等距三角形”,请直接写出的取值范围2如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移
2、后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间3如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值4已知,点在上,点在 上(1)如图1中,、的数量关系为: ;(不需要证明);如图2中,、的数量关系为: ;(不需要证明)(2)如图 3中,平分,平分,且,求的度数;(3)如图4中,平分
3、,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数5问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接
4、PA、PC,BAP和DCP的平分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数6如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数7如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences)这个常数叫做等比数列的公比,通常用字母q表示(q0)(1)观察一个等比列数1,它的公比q ;如果an(n为正整数)表示这个等比数列的
5、第n项,那么a18 ,an ;(2)如果欲求1+2+4+8+16+230的值,可以按照如下步骤进行:令S1+2+4+8+16+230等式两边同时乘以2,得2S2+4+8+16+32+231由 式,得2SS2311即(21)S2311所以 请根据以上的解答过程,求3+32+33+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q1,请用含a1,q,n的代数式表示a1+a2+a3+an8阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)
6、(2)9阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:,即23,的整数部分为2,小数部分为(2)请解答:(1)整数部分是 ,小数部分是 (2)如果的小数部分为a,的整数部分为b,求|ab|+的值(3)已知:9+x+y,其中x是整数,且0y1,求xy的相反数10(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根华罗庚脱口而出:
7、“39”邻座的乘客十分惊奇,忙间其中计算的奥妙你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:第一步:,能确定59319的立方根是个两位数第二步:59319的个位数是9,能确定59319的立方根的个位数是9第三步:如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3,因此59319的立方根是39(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤(2)填空:_11阅读下面的文字,解答问题对于实数a,我们规定:用符号a表示不大于a的最大整数;用a表示a减去a所得的差例如:1,2.22,1,2.22.220.2(1
8、)仿照以上方法计算: 5 ;(2)若1,写出所有满足题意的整数x的值: (3)已知y0是一个不大于280的非负数,且满足0我们规定:y1,y2,y3,以此类推,直到yn第一次等于1时停止计算当y0是符合条件的所有数中的最大数时,此时y0 ,n 12规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为正整数)(3)求13已知、两点的坐标分别为,将线段水平向右平移到,连接,得四边形,且(1)点的坐标为_,点D的坐标为_;(2)如图1,轴于,上有一动点,连接、,求
9、最小时点位置及其坐标,并说明理由;(3)如图2,为轴上一点,若平分,且于,求与之间的数量关系14如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点(1)若时,则_;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数(用含的代数式表示)15在平面直角坐标系中,已知长方形,点,.(1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.在运动过程中,求的面积与的面积之间的数量关系;若,求的面积与的面积之比. 16如图,数轴上两点A、B对应的数分别是1,1,点P是线段AB上一动
10、点,给出如下定义:如果在数轴上存在动点Q,满足|PQ|2,那么我们把这样的点Q表示的数称为连动数,特别地,当点Q表示的数是整数时我们称为连动整数(1)3,0,2.5是连动数的是 ;(2)关于x的方程2xmx+1的解满足是连动数,求m的取值范围 ;(3)当不等式组的解集中恰好有4个解是连动整数时,求a的取值范围17在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C(m,-1),D(1,n)(1)m=_,n=_(2)点P的坐标是(c,0)设ABP=,请写出BPD和PDC之间的数量关系(用含的式子表示,若有多种数量关系,选择一种加以说明)当三角形PAB的面积不小于3且不
11、大于10,求点p的横坐标C的取值范围(直接写出答案即可)18在平面直角坐标系中,为坐标原点已知两点,且、满足;若四边形为平行四边形,且 ,点在轴上(1)如图,动点从点出发,以每秒个单位长度沿轴向下运动,当时间为何值时,三角形的面积等于平行四边形面积的四分之一;(2)如图,当从点出发,沿轴向上运动,连接、,、存在什么样的数量关系,请说明理由(排除在和两点的特殊情况)19题目:满足方程组的x与y的值的和是2,求k的值按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由xy2,构造关于k的方程求解,从而得出k值(1)某数学兴趣小组对本题的解法又进行了探究利用整
12、体思想,对于方程组中每个方程变形得到“xy”这个整体,或者对方程组的两个方程进行加减变形得到“xy”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程(2)小勇同学的解答是:观察方程,令3xk,5y1解得y,3xy2,xk3把x,y代入方程得k所以k的值为或请诊断分析并评价“小勇同学的解答”20如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.21如图,是的平分线,和的度数满足方程组,(1)求和的度数;(2)求证:.(
13、3)求的度数.22新定义,若关于,的二元一次方程组的解是,关于,的二元一次方程组的解是,且满足,则称方程组的解是方程组的模糊解关于,的二元一次方程组的解是方程组的模糊解,则的取值范围是_23阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数、满足,求和的值本题常规思路是将两式联立组成方程组,解得、的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由可得,由+2可得这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组,
14、则_,_;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数、,定义新运算:,其中、是常数,等式右边是通常的加法和乘法运算已知,那么_24对x,y定义一种新运算T,规定:T(x,y)=ax+2by1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a0+2b11=2b1(1)已知T(1,1)=2,T(4,2)=3求a,b的值;若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都
15、成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?25某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算)如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费)如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处现在有两种往返方案:方案一:去时4人同乘一
16、辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返问选择哪种计费方式更省钱?(写出过程)26我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围27某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B每
17、吨1000元由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存经市场调查获得以下信息:将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);公路运输时,每吨每千米还需加收1元的燃油附加费;运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输
18、总花费较少?请说明理由28阅读理解:定义:,为数轴上三点,若点到点的距离是它到点的时距离的(为大于1的常数)倍,则称点是的倍点,且当是的倍点或的倍点时,我们也称是和两点的倍点例如,在图1中,点是的2倍点,但点不是的2倍点(1)特值尝试若,图1中,点_是的2倍点(填或)若,如图2,为数轴上两个点,点表示的数是,点表示的数是4,数_表示的点是的3倍点(2)周密思考:图2中,一动点从出发,以每秒2个单位的速度沿数轴向左运动秒,若恰好是和两点的倍点,求所有符合条件的的值(用含的式子表示)(3)拓展应用数轴上两点间的距离不超过30个单位长度时,称这两点处于“可视距离”若(2)中满足条件的和两点的所有倍点
19、均处于点的“可视距离”内,请直接写出的取值范围(不必写出解答过程)29如图,已知点,点,且,满足关系式(1)求点、的坐标;(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、试探究,之间的数量关系;(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标30阅读以下内容:已知有理数m,n满足m+n3,且求k的值三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值(1)试选择其中一名同学的思路,解答此题;(
20、2)在解关于x,y的方程组时,可以用73消去未知数x,也可以用2+5消去未知数y求a和b的值【参考答案】*试卷处理标记,请不要删除一、解答题1(1)5;(2)dAC=11,ABC不是为“等距三角形”;(3)m4【分析】(1)根据两点之间的直角距离的定义,结合O、P两点的坐标即可得出结论;(2)根据两点之间的直角距离的定义,用含x、y的代数式表示出来d(O,Q)=4,结合点Q(x,y)在第一象限,即可得出结论;(3)由点N在直线y=x+3上,设出点N的坐标为(m,m+3),通过寻找d(M,N)的最小值,得出点M(2,-1)到直线y=x+3的直角距离【详解】解:(1)由“勾股距”的定义知:dOA=
21、|2-0|+|3-0|=2+3=5,故答案为:5;(2)dAB=|4-2|+|2-3|=2+1=3,2dAB=6,点C在第三象限,m0,n0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),dOC=2dAB,-(m+n)=6,即m+n=-6,dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,5+1112,11+125,12+511,ABC不是为“等距三角形”;(3)点C在x轴上时,点C(m,0),则dAC=|2-m|+3,dBC=|4-m|+2,当m2时,dAC=2
22、-m+3=5-m,dBC=4-m+2=6-m,若ABC是“等距三角形”,5-m+6-m=11-2m=3,解得:m=4(不合题意),又5-m+3=8-m6-m,当2m4时,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若ABC是“等距三角形”,则m+1+6-m=73,6-m+3=m+1,解得:m=4(不和题意),当m4时,dAC=m+1,dBC=m-2,若ABC是“等距三角形”,则m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,m4时,ABC是“等距三角形”,综上所述:ABC是“等距三角形”时,m的取值范围为:m4【点睛】本题考查坐标与图形的性质,关键是对“勾股距”和“等距
23、三角形”新概念的理解,运用“勾股距”和“等距三角形”解题2(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【
24、详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH
25、相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得
26、:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键3(1)100;(2)75;(3)n=3【分析】(1)如图:过O
27、作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=
28、144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键4(1)BMEMENEND;BMFMFNFND(2)120(3)FEQ的大小没发生变化,FEQ30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(B
29、MEEND)BMFFND180,可求解BMF60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQBME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BMFMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BM
30、EEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,NEQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键5(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分
31、点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,APC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过
32、点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键6(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平
33、角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键7(1) , , ;(2);(3)【分析】(1)1即可求出q,根据已知数的特点求出a18和an即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可【详解】解:(1)1,a181()17,an1()n1
34、,故答案为:,; (2)设S3+32+33+323,则3S32+33+323+324,2S3243,S(3)ana1qn1,a1+a2+a3+an【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度8(1)(2)【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)(2)原式【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.9(1)7;-7;(2)5;(3)13-【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a、b的
35、值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求【详解】解:(1)78,的整数部分是7,小数部分是-7故答案为:7;-7(2)34,23,b2|a-b|+=|-3-2|+=5-+=5(3)23119+12,9+=x+y,其中x是整数,且0y1,x11,y-11+9+-2,x-y11-(-2)13-【点睛】本题考查的是无理数的小数部分和整数部分及其运算估算无理数的整数部分是解题关键10(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可(2)根据题中所给的分
36、析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可【详解】解:(1)第一步:,能确定110592的立方根是个两位数第二步:的个位数是2,能确定110592的立方根的个位数是8第三步:如果划去110592后面的三位592得到数110,而,则,可得,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:,能确定21952的立方根是个两位数第二步:的个位数是2,能确定21952的立方根的个位数是8第三步:如果划去21952后面的三位952得到数21,而,则,可得,由此能确定21952的立方根的十位数是2,因此21952的立方根是28
37、即,故答案为:28【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度11(1)2;3;(2)1、2、3;(3)256,4【分析】(1)依照定义进行计算即可;(2)由题可知,则可得满足题意的整数的的值为1、2、3;(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算【详解】解:(1)由定义可得,故答案为:2;(2),即,整数的值为1、2、3故答案为:1、2、3(3),即,可设,且是自然数,是符合条件的所有数中的最大数,即故答案为:256,4【点睛】本题属于新定义类问题,主要考查估算无理数大小,无理数的整
38、数部分和小数部分,理解定义内容是解题关键12(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为则第5个式子为:故应填:;(2)第1个等式的分母为:第2个等式的分母为:第3个等式的分母为:第4个等式的分母为:归纳类推得,第n个等式的分母为:则第n个等式为:(n为正整数)故应填:;(3)由(2)的结论得:则.【点睛】本题考查了有理数运算的规律
39、类问题,依据已知等式归纳总结出等式的一般规律是解题关键.13(1),;(2),理由见解析;(3)【分析】(1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标;(2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出 QC、QG后即可得到Q点坐标;(3)过H作HFAB,过C作CMED,则根据已知条件、平行线的性质和角的有关知识可以得到 【详解】(1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(-1)=2,平行四边形ABCD的高为2,AD=BC=S四边形ABCD2=122=6,C点坐标为(-4+6,-1)即(2,-1),D点坐标为(-2+6,1)即(4,1);(
40、2)解:如图,连接交于,此时最小(两点之间,线段最短),过作于,设,又,(3),平分,又,设,则,过作,又,过作,于,又,【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键 14(1)60;(2)n+40;(3)n+40或n-40或220-n【分析】(1)过点E作EFAB,然后根据两直线平行内错角相等,即可求BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EFAB,由角平分线的定义,平行线的性质,以及角的和差计算即可【详解】解:(1)当n=20时,ABC=40,过E作EFAB,则EFCD,BEF=ABE,DEF=CD