1、人教版七年级下册数学期中测试题完整一、选择题1下列说法正确的是()A4的平方根是B16的平方根是C2是的算术平方根D是36的算术平方根2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3在平面直角坐标系中位于第二象限的点是( )ABCD4给出以下命题:对顶角相等;在同一平面内, 垂直于同一条直线的两条直线平行;相等的角是对顶角;内错角相等其中假命题有( )A1个B2个C3个D4个5如图,如果ABEF,EFCD,下列各式正确的是( )A1+23=90B12+3=90C1+2+3=90D2+31=1806下列说法:两个无理数的和可能是有理数:
2、任意一个有理数都可以用数轴上的点表示;是三次二项式;立方根是本身的数有0和1;其中正确的是( )ABCD7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,均在格点上,其顺序按图中“”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,1),P5(1,1),P6(1,2)根据这个规律,点P2021的坐标为()A(505,505)B(505,506)C(506,506)D(505,505)二、填空题9计算:的结果为_10点A(
3、2,1)关于x轴对称的点的坐标是_11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_12如下图,C岛在A岛的北偏东65方向,在B岛的北偏西35方向,则_度13将一张长方形纸条折成如图的形状,已知,则_14a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,以此类推,则a2020=_15已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为_16如图,一个点在第一象限及轴、轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1)
4、,然后接着按图中箭头所示方向运动即(0,0)(0,1)(1,1)(1,0),那么第42秒时质点所在位置的坐标是_三、解答题17计算:(1).(2)12+(2)3 .18求下列各式中的值(1)(2)19补全下面的证明过程和理由:如图,AB和CD相交于点O,EFAB,CCOA,DBOD求证:AF证明:CCOA,DBOD,( )又COABOD,( )C ( )ACDF( )A ( )EFAB,F ( )AF( )20已知点A(2,3),B(4,3),C(1,3)(1)在平面直角坐标系中标出点A,B,C的位置;(2)求线段AB的长;(3)求点C到x轴的距离,点C到AB的距离;(4)求三角形ABC的面积
5、;(5)若点P在y轴上,且三角形ABP的面积与三角形ABC的面积相等,求点P的坐标21若的整数部分为a,小数部分为b(1)求a,b的值(2)求的值22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长23如图1,已ABCD,CA(1)求证:ADBC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究BAE,CDE,E之间的数量关系,并证明(3)如图3,若C90,且点E在线段BC上,DF平分EDC,射线DF在EDC的内部,且交BC于点M,交AE延长线于点F,AED+AEC180,直接写出AE
6、D与FDC的数量关系: 点P在射线DA上,且满足DEP2F,DEAPEADEB,补全图形后,求EPD的度数24如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由【参考答
7、案】一、选择题1B解析:B【分析】根据平方根和算术平方根的定义判断即可【详解】解:A4的平方根是2,故错误,不符合题意;B的平方根是4,故正确,符合题意;C-4没有算术平方根,故错误,不符合题意;D-6是36的一个平方根,故错误,不符合题意;故选B【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车
8、在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点
9、分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据对顶角的性质、平行线的判定和性质进行判断即可【详解】解:对顶角相等,是真命题;在同一平面内,垂直于同一条直线的两条直线平行,是真命题;相等的角不一定是对顶角,原命题是假命题;两直线平行,内错角相等,原命题是假命题故选:B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的判定和性质,难度较小5D【分析】根据平行线的性质,即可得到3=COE,2+BOE=180,进而得出2+3-1=180【详解】EFCD3=COE31=COE1=BOEABEF2+BOE=180,即2+31=18
10、0故选:D【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补6A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可【详解】两个无理数的和可能是有理数,说法正确如:和是无理数,0是有理数有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确是二次二项式,说法错误立方根是本身的数有0和,说法错误综上,说法正确的是故选:A【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后
11、根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,解析:A【分析】先分别求出点的坐标,再归纳类推出一般规律即可得【详解】解:由题意得
12、:点的坐标为,即,点的坐标为,即,点的坐标为,即,归纳类推得:点的坐标为,其中为正整数,点的坐标为,故选:A【点睛】本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键二、填空题96【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数解析:6【分析】根据算术平方根的定义即可求解【详解】解:的结果为6故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:被开方数a是非负数;算术平方根a本身是非负数10(2,1)【分析】根据“关于x轴对称的点,横坐标相
13、同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本解析:(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数111+2-A=90【分析】先根据三角形的外角等于与它不
14、相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形
15、的外角与它相邻的内角互补,等于与它不相邻的两个内角的和12100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35解析:100【分析】根据方位角的概念,过点C作辅助线,构造两组平行线,利用平行线的性质即可求解【详解】如图,作CEAD,则CEBFCEAD,=65CEBF,=35=6535=100故答案为:100【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线两直线平行,内错角相等1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1B
16、AD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等14【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的探索,解析:【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的
17、探索,解题的关键是根据题意发现规律15(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数解析:(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,又因为点P到x轴的距离为2,到y轴的距离为5,所以点P的横坐标为5,纵坐标为2,所以点P的坐标为(5,2),故答案为(5,2)【点睛】此题考查的是求点的坐标,掌握各个象限点
18、的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键16(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:(6,6)【分析】根据质点移动的各点的坐标与时间的关系,找出规律即可解答【详解】由题意可知质点移动的速度是1个单位长度秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+48秒,到(0,3)时用了9秒,从(0,3)到(3,0)有六个单位长度,则到(3,0)时用了9+615秒,以此类
19、推到(4,0)用了16秒,到(0,4)用了16+824秒,到(0,5)用了25秒,到(5,0)用了25+1035秒,故第42秒时质点到达的位置为(6,6),故答案为:(6,6)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律进而得出第42秒时质点所在位置的坐标是解题关键三、解答题17(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-解析:(1)0;(2)-3.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根
20、、立方根定义,以及乘法法则计算即可得到结果【详解】解:(1)原式=3-6-(-3)=3-6+3=0;(2)原式= -1+(-8) -(-3)(- )=-1-1-1=-3故答案为(1)0;(2)-3【点睛】本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键18(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得【详解】解:(1)即 (2)解得,解析:(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得【详解
21、】解:(1)即 (2)解得,【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质19见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),解析:见解析【分析】根据对顶角相等结合已知得出C=D,从而得出ACDF,由平行线的性质得出A=ABD,F=ABD,即可得出结论【详解】解:C=COA,D=BOD(已知),又COA=BOD(对顶角相等),C=D(等量代换)ACDF(内错角相等,两直线平行)A=ABD(两直线平行,内错角相等)EFAB,F=ABD(两直线平行,内错角
22、相等)A=F(等量代换)故答案为:已知,对顶角相等;D,等量代换;内错角相等,两直线平行;ABD,两直线平行,内错角相等;ABD,两直线平行,同位角相等,等量代换【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键20(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标
23、求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)A(-2,3),B(4,3),AB=4-(-2)=6;(3)C(-1,-3),C到x轴的距离为3,到直线AB的距离为6;(4)AB=6,C到直线AB的距离为6,;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);P(0,-3)或(0,9).【点睛】本题主要考查了坐
24、标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分解析:(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分与小数部分问题,掌握无理数的估值方法是关键.22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【
25、详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键23(1)见解析;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根解析:(1)见解析
26、;(2)BAE+CDE=AED,证明见解析;(3)AED-FDC=45,理由见解析;50【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EFAB,根据平行线的性质得ABCDEF,然后由两直线平行内错角相等可得结论;(3)根据AED+AEC=180,AED+DEC+AEB=180,DF平分EDC,可得出2AED+(90-2FDC)=180,即可导出角的关系;先根据AED=F+FDE,AED-FDC=45得出DEP=2F=90,再根据DEA-PEA=DEB,求出AED=50,即可得出EPD的度数【详解】解:(1)证明:ABCD,A+D=180,C=A,C+D=180,ADBC;(2)B
27、AE+CDE=AED,理由如下:如图2,过点E作EFAB,ABCDABCDEFBAE=AEF,CDE=DEF即FEA+FED=CDE+BAEBAE+CDE=AED;(3)AED-FDC=45;AED+AEC=180,AED+DEC+AEB=180,AEC=DEC+AEB,AED=AEB,DF平分EDCDEC=2FDCDEC=90-2FDC,2AED+(90-2FDC)=180,AED-FDC=45,故答案为:AED-FDC=45;如图3,AED=F+FDE,AED-FDC=45,F=45,DEP=2F=90,DEA-PEA=DEB=DEA,PEA=AED,DEP=PEA+AED=AED=90,
28、AED=70,AED+AEC=180,DEC+2AED=180,DEC=40,ADBC,ADE=DEC=40,在PDE中,EPD=180-DEP-AED=50,即EPD=50【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键24(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分
29、线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+ABQ90
30、,ABF+EAB36090270,又AP、BP分别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC180,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题