1、人教版八年级上册数学压轴题试卷及答案一、压轴题1在ABC中,已知A(1)如图1,ABC、ACB的平分线相交于点D求BDC的大小(用含的代数式表示);(2)如图2,若ABC的平分线与ACE的平分线交于点F,求BFC的大小(用含的代数式表示);(3)在(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的平分线与GCB的平分线交于点M(如图3),求BMC的度数(用含的代数式表示)2(1)填空把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上,那么的度数是_;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线上,那么的度数是_(2
2、)解答:把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线右侧,且,求的度数(3)探究:把一张四边形的纸片按如图所示的方式折叠,为折痕,设,求,之间的数量关系3学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究(初步思考)我们不妨将问题用符号语言表示为:在DEF中,ACDF,BCEF,BE,然后,对B进行分类,可分为“B是直角、
3、钝角、锐角”三种情况进行探究(深入探究)第一种情况:当B是直角时,ABCDEF(1)如图,在ABC和DEF中,ACDF,BCEF,BE90,根据_,可以知道RtABCRtDEF第二种情况:当B是钝角时,ABCDEF(2)如图,在ABC和DEF中,ACDF,BCEF,BE,且B、E都是钝角求证:ABCDEF第三种情况:当B是锐角时,ABC和DEF不一定全等(3)在ABC和DEF中,ACDF,BCEF,BE,且B、E都是锐角请你用直尺在图中作出DEF,使DEF和ABC不全等,并作简要说明4如图,若要判定纸带两条边线a,b是否互相平行,我们可以采用将纸条沿AB折叠的方式来进行探究(1)如图1,展开后
4、,测得,则可判定a/b,请写出判定的依据_;(2)如图2,若要使a/b,则与应该满足的关系是_;(3)如图3,纸带两条边线a,b互相平行,折叠后的边线b与a交于点C,若将纸带沿(,分别在边线a,b上)再次折叠,折叠后的边线b与a交于点,AB/,求出的长5如图(1),AB4,ACAB,BDAB,ACBD3点 P 在线段 AB 上以 1的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动它们运动的时间为 (s)(1)若点 Q 的运动速度与点 P 的运动速度相等,当1 时,ACP 与BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2
5、)如图(2),将图(1)中的“ACAB,BDAB”为改“CABDBA60”,其他条件不变设点 Q 的运动速度为,是否存在实数,使得ACP 与BPQ 全等?若存在,求出相应的、的值;若不存在,请说明理由6如图,ABC是等边三角形,ADC与ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,EAF45,且AF与AB在AE的两侧,EFAF(1)依题意补全图形(2)在AE上找一点P,使点P到点B,点C的距离和最短;求证:点D到AF,EF的距离相等7(1)问题发现:如图1,ACB和DCE均为等边三角形,点A、D、E在同一直线上,连接BE请直接写出AEB的度数为_;试猜想线段AD与线段BE有怎样的
6、数量关系,并证明;(2)拓展探究:图2, ACB和DCE均为等腰三角形,ACBDCE90,点A、D、E在同直线上, CM为DCE中DE边上的高,连接BE,请判断AEB的度数线段CM、AE、BE之间的数量关系,并说明理由8问题背景:(1)如图1,已知ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(
7、2,0),点A的坐标为(6,3),请直接写出B点的坐标9在中,是的角平分线,于点. (1)如图1,连接,求证:是等边三角形;(2)如图2,点是线段上的一点(不与点重合),以为一边,在下方作,交延长线于点.求证:;(3)如图3,点是线段上的点,以为一边,在的下方作,交延长线于点.直接写出,与数量之间的关系.10(阅读材料):(1)在中,若,由“三角形内角和为180”得(2)在中,若,由“三角形内角和为180”得(解决问题):如图,在平面直角坐标系中,点C是x轴负半轴上的一个动点已知轴,交y轴于点E,连接CE,CF是ECO的角平分线,交AB于点F,交y轴于点D过E点作EM平分CEB,交CF于点M(
8、1)试判断EM与CF的位置关系,并说明理由;(2)如图,过E点作PECE,交CF于点P求证:EPC=EDP;(3)在(2)的基础上,作EN平分AEP,交OC于点N,如图请问随着C点的运动,NEM的度数是否发生变化?若不变,求出其值:若变化,请说明理由11对定义一种新运算,规定:(其中均为非零常数)例如:(1)已知求的值;若关于的不等式组恰好有3个整数解,求的取值范围;(2)当时,对任意有理数都成立,请直接写出满足的关系式学习参考:,即单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的结果相加;,即多项式乘以多项式就是用一个多项式的每一项去乘另一个多项式的每一项,再把所得的结果相加12在
9、初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的例:已知:,求代数式x2+的值解:,4即4x+4x2+(x+)2216214材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题例:若2x3y4z,且xyz0,求的值解:令2x3y4zk(k0)则根据材料回答问题:(1)已知,求x+的值(2)已知,(abc0),求的值(3)若,x0,y0,z0,且abc7,求xyz的值13(1)发现:如图1,的
10、内角的平分线和外角的平分线相交于点。当时,则 当时,求的度数(用含的代数式表示)(2)应用:如图2,直线与直线垂直相交于点,点在射线上运动(点不与点重合),点在射线上运动(点不与点重合),延长至,已知的角平分线与的角平分线所在的直线相交于,在中,如果一个角是另一个角的倍,请直接写出的度数.14阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2,
11、 EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题 如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积15(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与
12、存在怎样的数量关系,并说明理由16探究发现:如图,在中,内角的平分线与外角的平分线相交于点(1)若,则 ; 若,则 ; (2)由此猜想:与的关系为 (不必说明理由)拓展延伸:如图,四边形的内角与外角的平分线相交于点,(3)若,求的度数,由此猜想与,之间的关系,并说明理由17已知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 18
13、如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,EDF30,ABC40,CD平分ACB,将DEF绕点D按逆时针方向旋转,记ADF为(0180),在旋转过程中;(1)如图2,当 时,当 时,DEBC;(2)如图3,当顶点C在DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N,此时的度数范围是 ;1与2度数的和是否变化?若不变求出1与2度数和;若变化,请说明理由;若使得221,求的度数范围19如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足(1)a= ;b= ;直角三角形AOC的面积为 (2)已知坐
14、标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向点A匀速移动,点P到达O点整个运动随之结束AC的中点D的坐标是(4,3),设运动时间为t秒问:是否存在这样的t,使得ODP与ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由(3)在(2)的条件下,若DOC=DCO,点G是第二象限中一点,并且y轴平分GOD点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究GOD,OHC,ACE之间的数量关系,并证明你的结论(三角形的内角和为180)20在ABC中,AB=AC,D是直线BC上一点,
15、以AD为一条边在AD的右侧作ADE,使AE=AD,DAE=BAC,连接CE(1)如图,当点D在BC延长线上移动时,若BAC=40,则ACE=,DCE=,BC、DC、CE之间的数量关系为;(2)设BAC=,DCE=当点D在BC延长线上移动时,与之间有什么数量关系?请说明理由;当点D在直线BC上(不与B,C两点重合)移动时,与之间有什么数量关系?请直接写出你的结论(3)当CEAB时,若ABD中最小角为15,试探究ACB的度数(直接写出结果,无需写出求解过程)【参考答案】*试卷处理标记,请不要删除一、压轴题1(1)BDC90+;(2)BFC;(3)BMC90+【解析】【分析】(1)由三角形内角和可求
16、ABC+ACB180,由角平分线的性质可求DBC+BCD(ABC+ACB)90,由三角形的内角和定理可求解;(2)由角平分线的性质可得FBCABC,FCEACE,由三角形的外角性质可求解;(3)由折叠的性质可得GBFC,方法同(1)可求BMC90+,即可求解.【详解】解:(1)A,ABC+ACB180,BD平分ABC,CD平分ACB,DBCABC,BCDACB, DBC+BCD(ABC+ACB)90,BDC180(DBC+BCD)90+;(2)ABC的平分线与ACE的平分线交于点F,FBCABC,FCEACE,ACEA+ABC,FCEBFC+FBC,BFCA;(3)GBC的平分线与GCB的平分
17、线交于点M,方法同(1)可得BMC90+, 将FBC以直线BC为对称轴翻折得到GBC,GBFC,BMC90+.【点睛】此题考查三角形的内角和定理,三角形的外角等于与它不相邻的两个内角的和,角平分线的性质定理,折叠的性质.2,;,;,.【解析】【分析】(1)如图知,得可求出解.由图知得可求出解.(2)由图折叠知,可推出,即可求出解.由图中折叠知,可推出,即可求出解.(3)如图-1、-2中分别由折叠可知,、,即可求得、.【详解】解:(1)如图中,故答案为.如图中,故答案为.(2)如图中由折叠可知,;如图中根据折叠可知,;(3)如图-1中,由折叠可知,;如图-2中,由折叠可知,.【点睛】本题考查了图
18、形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.3(1)HL;(2)见解析;(3)如图,见解析;DEF就是所求作的三角形,DEF和ABC不全等【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CGAB交AB的延长线于G,过点F作FHDE交DE的延长线于H,根据等角的补角相等求出CBG=FEH,再利用“角角边”证明CBG和FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明RtACG和RtDFH全等,根据全等三角形对应角相等可得A=D,然后利用“
19、角角边”证明ABC和DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到DEF与ABC不全等;(4)根据三种情况结论,B不小于A即可【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL(2)证明:如图,分别过点C、F作对边AB、DE上的高CG、FH,其中G、H为垂足ABC、DEF都是钝角G、H分别在AB、DE的延长线上CGAG,FHDH,CGAFHD90CBG180ABC,FEH180DEF,ABCDEF,CBGFEH在BCG和EFH中,CGBFHE,CBGFEH,BCEF,BCGEFHCGFH又ACDFRtAC
20、GDFHAD在ABC和DEF中,ABCDEF,AD,ACDF,ABCDEF(3)如图,DEF就是所求作的三角形,DEF和ABC不全等【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细4(1)内错角相等,两直线平行;(2)1+22=180;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:3=4,若ab,则3=2,结合三角形内角和定理,即可得到答案;(3)分两种情况:当B1在B的左侧时,如图2,当B1在B的右侧时,如图3,分别求出的长,即可得到答案【详解】(
21、1),ab(内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:3=4,若ab,则3=2,4=2,2+4+1=180,1+22=180,要使ab,则与应该满足的关系是:1+22=180故答案是:1+22=180;(3)当B1在B的左侧时,如图2,AB/,ab,AA1=BB1=3,=AC- AA1=7-3=4;当B1在B的右侧时,如图3,AB/,ab,AA1=BB1=3,=AC+AA1=7+3=10综上所述:=4或10【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键5(1)全等,垂直
22、,理由详见解析;(2)存在,或【解析】【分析】(1)在t =1的条件下,找出条件判定ACP和BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证CPQ= 90,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又A=B= 90,在ACP和BPQ中,ACPBPQ(SAS).ACP=BPQ ,APC+BPQ=APC+ACP = 90*.CPQ= 90,即线段PC与线段PQ垂直;(2)若ACPBPQ,则AC= BP,AP= BQ,解得
23、;若ACPBQP,则AC= BQ,AP= BP,解得:综上所述,存在或使得ACP与BPQ全等.【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.6(1)详见解析;(2)详见解析;详见解析【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可(2)本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论【详解】(1)补全图形,如图1所示(2)如图2,连接BD,P为BD与AE的交点等边ACD,AECDPC=PD,PC+P
24、B最短等价于PB+PD最短故B,D之间直线最短,点P即为所求证明:连接DE,DF如图3所示ABC,ADC是等边三角形ACAD,ACBCAD60AECDCAECAD30CEAACBCAE30CAECEACACECD垂直平分AEDADEDAEDEAEFAF,EAF45FEA45FEAEAFFAFE,FADFEDFADFED(SAS)AFDEFD点D到AF,EF的距离相等【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升7(1)60;AD=BE.证明见解析;(2)AEB90;AE=2CM+
25、BE;理由见解析.【解析】【分析】(1)由条件ACB和DCE均为等边三角形,易证ACDBCE,从而得到:AD=BE,ADC=BEC由点A,D,E在同一直线上可求出ADC,从而可以求出AEB的度数由ACDBCE,可得AD=BE;(2)首先根据ACB和DCE均为等腰直角三角形,可得AC=BC,CD=CE,ACB=DCE=90,据此判断出ACD=BCE;然后根据全等三角形的判定方法,判断出ACDBCE,即可判断出BE=AD,BEC=ADC,进而判断出AEB的度数为90;根据DCE=90,CD=CE,CMDE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM【详解】(1
26、)ACB=DCE,DCB=DCB,ACD=BCE,在ACD和BCE中,,ACDBCE,AD=BE,CEB=ADC=180CDE=120,AEB=CEBCED=60;AD=BE.证明:ACDBCE,AD=BE(2)AEB90;AE=2CM+BE;理由如下:ACB和DCE均为等腰直角三角形,ACB =DCE= 90,AC = BC, CD = CE, ACB =DCB =DCEDCB, 即ACD = BCE,ACDBCE,AD = BE,BEC = ADC=135AEB =BECCED =135 45= 90在等腰直角DCE中,CM为斜边DE上的高,CM =DM= ME,DE = 2CMAE =
27、DE+AD=2CM+BE【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题8(1)证明见解析;(2)DEBDCE;(3)B(1,4)【解析】【分析】(1)证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD=CAE,证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据AECCFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答【详解】(1)证明:BD直线m,CE直线m,
28、ADBCEA90BAC90BADCAE90BADABD90CAEABD 在ADB和CEA中ADBCEA(AAS)AEBD,ADCEDEAEADBDCE 即:DEBDCE (2)解:数量关系:DEBDCE 理由如下:在ABD中,ABD=180-ADB-BAD,CAE=180-BAC-BAD,BDA=AEC,ABD=CAE,在ABD和CAE中, ABDCAE(AAS)AE=BD,AD=CE,DE=AD+AE=BD+CE;(3)解:如图,作AEx轴于E,BFx轴于F,由(1)可知,AECCFB,CF=AE=3,BF=CE=OE-OC=4,OF=CF-OC=1,点B的坐标为B(1,4)【点睛】本题考查
29、的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键9(1)证明见解析;(2)证明见解析;(3)结论:,证明见解析【解析】【分析】(1)先根据直角三角形的性质得出,再根据角平分线的性质可得,然后根据三角形的判定定理与性质可得,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED使得,连接MF,先根据直角三角形的性质、等边三角形的判定得出是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等
30、的判定与性质、等量代换即可得证【详解】(1)是的角平分线,在和中,是等边三角形;(2)如图,延长ED使得,连接MF,是的角平分线,是等边三角形,即在和中,即即;(3)结论:,证明过程如下:如图,延长BD使得,连接NH由(2)可知,是等边三角形,即在和中,即即【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键10(1)EMCF,理由见解析;(2)证明见解析;(3)不变,且NEM=45,理由见解析【解析】【分析】(1)EMCF,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进
31、行求证即可;(2)根据垂直定义和三角形的内角和定理证得DCO+CDO=90,ECP+EPC=90,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且NEM=45,先利用平行线的性质得到AEC=ECO=2ECP,进而有AEP=CEP+AEC=90+2ECP,再由角平分线的定义NEP=AEN=45+ECP,再根据同角的余角相等得到ECP=MEP,然后等量代换证得NEM=45,是定值【详解】解:(1)EMCF,理由如下:CF平分ECO,EM平分FEC,ECF=FCO=,FEM=CEM=ABx轴ECO+CEF=180EMC=180-(CEM+ECF)=180-90=90EMCF(2)由题得,
32、EOC=90DCO+CDO=180-EOC=180-90=90PECECEP=90ECP+EPC=180-CEP=180-90=90DCO=ECPCDO=EPC又CDO=EDPEPC=EDP(3)不变,且NEM=45,理由如下:ABx轴AEC=ECO=2ECPAEP=CEP+AEC=90+2ECPEN平分AEPNEP=AEN=45+ECPCEP=90ECP+EPC=90又EMC=90MEP+EPC=90ECP=MEPNEP=NEM+MEP=NEM+ECP 又NEP=45+ECPNEM=45【点睛】本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等
33、、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻找相关联信息,确定解题思路,进而探究、推理、论证11(1);42a54;(2)m=2n【解析】【分析】(1)构建方程组即可解决问题;根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题【详解】解:(1)由题意得,解得,由题意得,解不等式得p-1解不等式得p,-1p,恰好有3个整数解,2342a54;(2)由题意:(mx+ny)(x+2y)=(my+nx)(y+2x),mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,对任意有理数x,y都成立,m=2n【点睛】本题考查一元一次不等式、二元一次方
34、程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型12(1)5;(2);(3)【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设k(k0),则a5k,b2k,c3k,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设(k0),化简得:,相加变形可得x、y、z的代入中,可得k的值,从而得结论;解法二:取倒数得:,拆项得,从而得x,z,代入已知可得结论【详解】解:(1),4,x1+4,x+5;(2)设k(k0),则a5k,b2k,c3k,;(3)解法一:设(k0),+得:2()3k,k,得:k,得:,得:k,x,y
35、,z代入中,得:,k4,x,y,z,xyz;解法二:,将其代入中得: ,y,x,z,xyz【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.13(1)25; ;(2)【解析】【分析】(1)利用外角和性质ACDABCA,OCDBOCOBC,再利用角平分线的定义进行等量代换即可;与同理可得;(2)根据题意分情况进行讨论,用到(1)的结论计算即可【详解】(1)ACDABCA,OCDBOCOBC,OB、OC分别平分ABC、ACD,A
36、CD 2OCD,ABC2OBC,2OCD2OBCA,A2BOC,A50,BOCA25,故填:25;,且平分平分(2)的角平分线与的角平分线所在的直线相交于,符合题意的情况有两种:根据(1)可知:根据(1)可知:【点睛】本题考查三角形外角和的性质、角平分线的定义,利用分类讨论的数学思想是关键14(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所
37、示: FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,MK=FN=2cm,【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用15(1)详见解析;(2)详见解析;,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC,CE=CD,ACB=DCE=60,进而得出BCE=ACD,判断出(SAS),即可得出结论; (2)同(1)的方法判断出(SAS),(SAS),即可得出结论; 先判断出APB=60,APC=60,在PE上取一点M,使PM=PC,证明是等边三角形,
38、进而判断出(SAS),即可得出结论【详解】(1)证明:和都是等边三角形, BC=AC,CE=CD,ACB=DCE=60, ABC+ACE=DCE+ACE, 即BCE=ACD, (SAS), BE=AD; (2)证明:和是等边三角形, AC=BC,CD=CE,ACB=DCE=60, ACB+BCD=DCE+BCD, 即ACD=BCE, (SAS), AD=BE, 同理:(SAS), AD=CF, 即AD=BE=CF; 解:结论:PB+PC+PD=BE,理由:如图2,AD与BC的交点记作点Q,则AQC=BQP, 由知, CAD=CBE, 在中,CAD+AQC=180-ACB=120, CBE+BQ
39、P=120, 在中,APB=180-(CBE+BQP)=60, DPE=60, 同理:APC=60, CPD=120, 在PE上取一点M,使PM=PC, 是等边三角形, ,PCM=CMP=60, CME=120=CPD, 是等边三角形, CD=CE,DCE=60=PCM, PCD=MCE, (SAS), PD=ME, BE=PB+PM+ME=PB+PC+PD【点睛】此题是三角形综合题,主要考查了三角形的内角和定理,等边三角形的性质和判定,全等三角形的判定和性质,构造出全等三角形是解本题的关键16(1)4025;(2)(或)(3)=【解析】【分析】(1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将的角度带入即可求解;(2)由(1)可得,即可求解;(3)在与的平分线相交于点,可知,又因为,两直线平行内错角相等,得出,再根据三角形一外角等于不相邻的两个内角的和,得出,再由四边形的内角和定理得出,最后在中:,代入整理即可得出结论【详解】解:(1)由题可知:BE为的角平分线,CE为的角平分线,=2=2,=2,三角形内角和等于,在中:,即:,在中:,即:,综上所述联立,由-2可得 :,当,则; 当,则;故答案为,;(2)由(1)知:(或);(3)与的平分线相交于点, ,又,