资源描述
七年级下册数学期中试卷及答案完整
一、选择题
1.的平方根是()
A. B. C.± D.±
2.下列图案中,是通过下图平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中,点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个命题:①5是25的算术平方根;②的平方根是-4;③经过直线外一点,有且只有一条直线与这条直线平行;④同旁内角互补.其中真命题的个数是( ).
A.0个 B.1个 C.2个 D.3个
5.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为( )
A. B. C.或 D.或
6.下列运算正确的是( )
A. B. C. D.
7.如图,ABCD为一长方形纸片,AB∥CD,将ABCD沿E折叠,A、D两点分别与A′、D′对应,若∠CFE=2∠CFD′,则∠AEF的度数是( )
A.60° B.80° C.75° D.72°
8.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)……则点A2021的坐标为( )
A.(505,﹣504) B.(506,﹣505)
C.(505,﹣505) D.(﹣506,506)
二、填空题
9.若,则的值为
10.点关于轴对称的点的坐标为_________.
11.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.
12.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2-∠1=_______º.
13.如图,有一条直的宽纸带,按图折叠,则的度数等于______.
14.对于任意有理数a,b,规定一种新的运算a⊙b=a(a+b)﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____
15.如图,直角坐标系中、两点的坐标分别为,,则该坐标系内点的坐标为__________.
16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______.
三、解答题
17.计算题:
(1);
(2)
18.求下列各式中的 .
(1) (2)
19.已知:,,垂足分别为B,D,,
求证:,
请你将证明过程补充完整.
证明:∵,,垂足分别为B,D(已知).
∴(垂直定义).
∴______________∥______________()
∴______________()
又∵(已知)
∴∠2=(),
∴______________∥______________()
∴()
20.如图,在平面直角坐标系中,三角形三个顶点的坐标分别为.点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点.
(1)在图中画出平移后的三角形,并写出点的坐标;
(2)求三角形的面积.
21.阅读下面的文字,解答问题.
大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题:
(1)的整数部分是___________,小数部分是___________;
(2)若设整数部分是,小数部分是,求的值.
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
23.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
24.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.
(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;
(2)关于“准互余三角形”,有下列说法:
①在中,若,,,则是“准互余三角形”;
②若是“准互余三角形”,,,则;
③“准互余三角形”一定是钝角三角形.
其中正确的结论是___________(填写所有正确说法的序号);
(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义开平方求解即可;
【详解】
解:∵,
∴的平方根是;
故答案选C.
【点睛】
本题主要考查了平方根的计算,准确计算是解题的关键.
2.C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变
解析:C
【分析】
根据平移的性质,即可解答.
【详解】
由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.
故选C
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.
3.B
【分析】
根据各象限内点的坐标特征解答.
【详解】
解:点P(-5,4)位于第二象限.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.C
【分析】
根据相关概念逐项分析即可.
【详解】
①5是25的算术平方根,故原命题是真命题;
②的平方根是,故原命题是假命题;
③经过直线外一点,有且只有一条直线与这条直线平行,故原命题是真命题;
④两直线平行,同旁内角互补,故原命题是假命题;
故选:C.
【点睛】
本题考查命题真假的判断,涉及到平方根,平行公理,以及平行线的性质,熟练掌握基本定理和性质是解题关键.
5.D
【分析】
分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.
【详解】
解:当点D在线段AB上时,如图1所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE+∠CDE=84°+20°=104°;
当点D在线段AB的延长线上时,如图2所示.
∵DE∥BC,
∴∠ADE=∠ABC=84°,
∴∠ADC=∠ADE-∠CDE=84°-20°=64°.
综上所述:∠ADC=104°或64°.
故选:D.
【点睛】
本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.
6.C
【分析】
利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误;
故选:C.
【点睛】
此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.
7.D
【分析】
先根据平行线的性质,由AB∥CD,得到∠CFE=∠AEF,再根据翻折的性质可得∠DFE=∠EFD′,由平角的性质可求得∠CFD′的度数,即可得出答案.
【详解】
解:∵AB∥CD,
∴∠CFE=∠AEF,
又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,
∴∠DFE=∠EFD′=3∠CFD′,
∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,
∴∠CFD′=36°,
∴∠AEF=∠CFE=2∠CFD′=72°.
故选:D.
【点睛】
本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.
8.B
【分析】
求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第
解析:B
【分析】
求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论;
【详解】
由题可知,
第一象限的点:,…角标除以4余数为2;
第二象限的点:,,…角标除以4余数为3;
第三象限的点:,,…角标除以4余数为0;
第四象限的点:,,…角标除以4余数为1;
由上规律可知:,
∴点在第四象限,
又∵,,
即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商,
∴.
故选:B.
【点睛】
本题主要考查了点的坐标规律,准确理解是解题的关键.
二、填空题
9.-1
【解析】
解:有题意得,,,,则
解析:-1
【解析】
解:有题意得,,,,则
10.【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握
解析:
【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
11.;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
解析:;
【详解】
解:由题意可知,∠B=60°,∠C=70°,所以°,
所以°,
在三角形BAE中,°,所以∠EAD=5°
故答案为:5°.
【点睛】
本题属于对角平分线和角度基本知识的变换求解.
12.60
【分析】
延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.
【详解】
解:延长BO交直线n于点C,如图,
∵直线m向上平移直
解析:60
【分析】
延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.
【详解】
解:延长BO交直线n于点C,如图,
∵直线m向上平移直线m得到直线n,
∴m∥n,
∴∠ACB=∠1,
∵∠3=120°,
∴∠AOC=60°
∵∠2=∠ACO+∠AOC=∠1+60°,
∴∠2-∠1=60°.
故答案为60.
【点睛】
本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.
13.75°
【分析】
由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.
【详解】
解:∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为
解析:75°
【分析】
由图形可得AD∥BC,可得∠CBF=30°,由于翻折可得两个角是重合的,于是利用平角的定义列出方程可得答案.
【详解】
解:∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为折痕,
∴2∠α+∠CBF=180°,
即2∠α+30°=180°,
解得∠α=75°.
故答案为:75°.
【点睛】
本题考查了平行线的性质,图形的翻折问题;找着相等的角,利用平角列出方程是解答翻折问题的关键.
14.-9
【分析】
直接利用已知运算法则计算得出答案.
【详解】
(﹣2)⊙6
=﹣2×(﹣2+6)﹣1
=﹣2×4﹣1
=﹣8﹣1
=﹣9.
故答案为﹣9.
【点睛】
此题考察新定义形式的有理数计算,
解析:-9
【分析】
直接利用已知运算法则计算得出答案.
【详解】
(﹣2)⊙6
=﹣2×(﹣2+6)﹣1
=﹣2×4﹣1
=﹣8﹣1
=﹣9.
故答案为﹣9.
【点睛】
此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.
15.【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正
解析:
【分析】
首先根据A、B点坐标确定原点位置,然后再建立坐标系,再确定C点坐标即可.
【详解】
解:点C的坐标为(-1,3),
故答案为:(-1,3).
【点睛】
此题主要考查了点的坐标,关键是正确建立坐标系.
16.【分析】
根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.
【详解】
解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可
解析:
【分析】
根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.
【详解】
解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得:,
∴B2021的横坐标为;
故答案为.
【点睛】
本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.
三、解答题
17.(1);(2)
【分析】
(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;
(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.
【详解】
解
解析:(1);(2)
【分析】
(1)先计算被开方数,再利用算术平方根的含义求解即可得到答案;
(2)先计算括号内的乘方,再计算括号内的减法,把除法转化为乘法,最后计算乘法运算即可得到答案.
【详解】
解:(1),
(2)
【点睛】
本题考查的是算术平方根的含义,含乘方的有理数的混合运算,掌握以上知识是解题的关键.
18.(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
解析:(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
∴.
【点睛】
本题考查了平方根与立方根,理解相关定义是解决本题的关键.
19.答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己
解析:答案见详解.
【分析】
根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.
【详解】
证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),
∴∠ABC=∠ADE=90°(垂直定义),
∴BC∥DE(同位角相等,两直线平行),
∴∠1=∠EBC(两直线平行,内错角相等),
又∵∠l=∠2 (已知),
∴∠2=∠EBC(等量代换),
∴BE∥GF(同位角相等,两直线平行),
∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).
【点睛】
本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
20.(1)作图见解析,;(2)7
【分析】
(1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案;
(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出
解析:(1)作图见解析,;(2)7
【分析】
(1)直接利用P点平移变化规律得出A′、B′、C′的坐标;直接利用得出各对应点位置进而得出答案;
(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)∵P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位.
∵,
∴,
如图所示,三角形A′B′C′即为所求,
(2)三角形ABC的面积为:4×5−×1×3−×2×4−×3×5=7.
【点睛】
此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.
21.(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了
解析:(1)2,;(2).
【分析】
(1)利用求解;
(2)由于,则,,然后计算.
【详解】
解:(1)的整数部分是2,小数部分是;
(2),
而整数部分是,小数部分是,
,,
.
【点睛】
本题考查了估算无理数的大小,熟悉相关性质是解题得关键.
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
23.(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠
解析:(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.
【详解】
解:(1)∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;
(3)不变,∠ADB:∠APB=.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1,
∴∠ADB:∠APB=;
(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠ABC,∠PBN=2∠DBN,
∴∠ABP=∠PBN=2∠DBN=∠ABN,
∵AM∥BN,
∴∠A+∠ABN=180°,
∴∠A+∠ABN=90°,
∴∠A+2∠DBN=90°,
∴∠A+∠DBN=(∠A+2∠DBN)=45°.
【点睛】
本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.
24.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角
解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°
【分析】
(1)由和是的角平分线,证明即可;
(2)根据“准互余三角形”的定义逐个判断即可;
(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.
【详解】
(1)证明:∵在中,,
∴,
∵BD是的角平分线,
∴,
∴,
∴是“准互余三角形”;
(2)①∵,
∴,
∴是“准互余三角形”,
故①正确;
②∵, ,
∴,
∴不是“准互余三角形”,
故②错误;
③设三角形的三个内角分别为,且,
∵三角形是“准互余三角形”,
∴或,
∴,
∴,
∴“准互余三角形”一定是钝角三角形,
故③正确;
综上所述,①③正确,
故答案为:①③;
(3)∠APB的度数是10°或20°或40°或110°;
如图①,
当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A=20°,
∴∠APB=110°;
如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
∴∠APB=40°;
如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠APB=20°;
如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,
∵∠ABC=50°,
∴∠A+∠APB=50°,
所以∠A=40°,
所以∠APB=10°;
综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.
【点睛】
本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.
展开阅读全文