资源描述
人教版六年级上册数学应用题附答案
1.水果超市昨天购进水果,其中苹果占。今天卖出了购进苹果的,卖出多少千克苹果?
2.甲乙两地相距100千米,一辆汽车行了全程的,行了多少千米?
3.一片树林有梨树150棵,桃树的棵数是梨树的,桃树有多少棵?
4.某修路队修一条长320米的公路,其中第一天修了,第二天修的比第一天的还多50米,两天一共修了多少米?
5.学校要准备一些奖品,需要单价4元的笔记本25本。去哪儿购买合算?
学海商场:按原价的出售
文学超市:购满100元优惠
6.一本故事书有360页,已经看了全书的。
7.武胜县共有公交车约200辆,其中是纯电动车,纯电动公交车有多少辆?
8.商场购进20箱香蕉,购进橘子的箱数是香蕉箱数的,商场购进了香蕉和橘子一共多少箱?
9.甲、乙两车同时从两地相对开出,经过2h相遇。甲车每时行80km,乙车的速度比甲快。两地相距多少千米?
10.珠海市长隆海洋王国2019年上半年接待游客为560万人,下半年游客量是上半年的。2019年长隆海洋王国下半年接待游客多少万人?
11.一个旅游景点去年全年接待游客约196万人,上半年接待游客数是全年的,第三季度接待游客数是上半年的,第三季度接待游客多少万人?
12.小红有48枚邮票,小新的邮票数是小红的,小明的邮票数是小新的,小明有多少枚邮票?
13.植树队准备种1200棵树,第一天种了总数的,第二天种的棵数是第一天的,第二天种了多少棵树?
14.大毛有120本课外书,二毛的课外书本数是大毛的,小毛的课外书本数是二毛的。小毛有多少本课外书?
15.果园里有桃树120棵,苹果树是桃树的,梨树是苹果树棵数的,梨树多少棵?
16.校园里有杨树20棵,柳树是杨树的,槐树是柳树的。槐树有多少棵?
17.一副围棋39元,一副中国象棋的价格是围棋的,一副陆战棋的价格是中国象棋的,一副陆战棋多少元?
18.只列式不计算。(列综合算式)
三个同学跳绳。小明跳了120个,小强跳的是小明的,小亮跳的是小强的。小亮跳了多少个?
列式:________________
19.小林有36枚邮票,小新的邮票是小林的,小明的邮票是小新的。小明有多少枚邮票?(只列式,不计算。)
20.幼儿园老师准备折1200只纸花,她们第一天完成了任务的,第二天完成了余下任务的,第三天需要折多少只才能完成任务?
21.兄弟两人要从公园门口沿马路向东去博物馆,而他们回家则要从公园门口沿马路向西行.他们商量是先回家取车,再骑到博物馆;还是直接从公园门口走到博物馆.哥哥算了一下:如果从公园到博物馆的距离超过1千米,则回家取车比较省时间;如果公园和博物馆的距离不足1千米,则直接走过去省时间.若骑车与步行的速度比是4:1,那么公园门口到他们家的距离是多少千米?
22.汽车往返甲、乙两地.去的时候平均每小时行50千米,返回的时候平均每小时行60千米,汽车往返两地平均每小时行多少千米?
23.一个书架上下两层共有图书450本,如果将上层书增加它的,下层书增加它的,这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?
24.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12个桃子。那么第一天和第二天所吃桃子的总数是多少个?
25.涛涛读一本故事书,第一天读了这本书的,第二天读了这本书的,这时还剩95页没有读。这本故事书共有多少页?
26.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?
27.
如果成套买,可以买几套运动服?
28.有一条线段AB,以端点A为起点量出全长的在线段上做记号M,以端点B为起点量出全长的在线段上做记号N。如果M和N之间的长度是14cm,那么整条线段AB的长度是多少?
29.一项工程,甲队独做20天完成,乙队独做每天完成.如果甲先独做5天,然后两队合做,还需多少天才能完成?
30.有甲、乙两只水桶,把甲桶里的半桶水倒入乙桶,刚好装了乙桶的,再把乙桶装满水后倒出全桶的后还剩12千克,甲桶可装水多少千克?
31.将一堆书本计划全部分给甲、乙、丙三个小朋友。原计划甲、乙、丙三人所得书本数之比为5∶4∶3。实际上,甲、乙、丙三人所得书本数之比为7∶6∶5,其中有一位小朋友比原计划少得了3本书。那么这位小朋友是谁?他实际得到书本是多少本?
32.甲箱子有50个球,乙箱子有15个球,从甲箱拿出多少个球放入乙箱里才使得甲、乙两箱球的数量比是?
33.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
34.学习与思考:问题探究。
如图,已知四边形ABCD,E、F 分别为AD、BC 的中点,连接BE、DF,四边形EBFD 与四边形ABCD 的面积之比是多少?
35.小汽车与货车同时从甲、乙两地相对开出,当货车行了全程的时,小汽车行了全程的少10千米,这时已行的路程与剩下路程的比是3∶5。甲、乙两地相距多少千米?
36.从甲地到乙地,客车只需要4小时,从乙地到甲地,货车需要5小时。现在两车同时从甲乙两地出发相向而行。
(1)两车相遇需要多少小时?并在图上表示相遇的大致位置。
(2)2小时后两车相距20千米,甲乙两地相距多少千米?
37.甲、乙两人合作制造完成了一批零件,甲乙两人制造零件个数比是4∶3,其中甲制造完成全部零件的还多6个,那么乙制造了多少个零件?
38.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
39.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李丽多做了.他们两人各做了多少道题?
40.幸福里小学上学期六年级女生人数是男生的,下学期转来3名女生,这时女生人数是男生人数的。阳光小学下学期六年级男生比女生多多少人?
41.下面是红星村耕地面积种植各种农作物情况,如图所示,完成下面问题。
项目
水稻
棉花
蔬菜
花卉
合计
种植面积(公顷)
400
占总面积百分比
45%
(1)根据扇形统计图与统计表里画的已知信息,把统计表补充完整。
(2)水稻的种植面积和棉花相比,比棉花种植面积多百分之几?
42.某校六年级学生参加课外社团的人数如图。
(1)把统计图补充完整。
(2)参加棋类社团的学生有18人,参加课外社团的学生一共有多少人?
(3)参加科技社团的人数比参加棋类社团的人数多多少人?
43.如图是乐乐根据商店购进的蔬菜而画出来的扇形统计图,请根据统计图回答问题。
(1)请在统计图中填出茄子所占的百分比。
(2)如果茄子有48千克,那么购进( )千克蔬菜,黄瓜有( )千克,青菜有( )千克。
(3)茄子的质量是黄瓜的( )%,是青菜的。
44.下面是六(4)班学生数学期末考试情况统计图。
(1)考80~89分的占总人数的百分之几?
(2)已知考80~89分的有17人,你能算出考100分的有多少人吗?
45.下面是某校六年级学生去年体育达标情况如图:
(1)完成下面的统计表。
项目
优秀
良好
达标
未达标
人数
60
(2)良好的人数比优秀的人数多百分之几?
46.阳光文具店举行元旦促销活动,A、B、C三种品牌的书包在这次促销活动中共计获得利润1200元。每卖一个书包获得的利润以及销售数量情况如下:
品牌
A
B
C
利润(元/个)
24
15
45
(1)在这次促销活动中B品牌书包一共销售了多少个?
(2)如图是三种品牌书包利润占比统计图,请在图中相应的括号里填上A、B、C。
(3)对于接下来书包的进货,你有什么建议?为什么?
47.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。
(1)图2的阴影部分面积是多少?(列式计算)
(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是( )。
48.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。小圆的半径是,大圆的半径是。
(1)当小圆从大圆上的点出发,沿着大圆滚动,第一次回到点时,小圆的圆心走过路线的长度是多少厘米?
(2)小圆未滚动时,小圆上的点与大圆上的点重合,从小圆滚动后开始计算,当点第10次与大圆接触时,点更接近大圆上的点( )。(括号里填、、或。)
49.某赛车的左、右轮的距离是2m,因此在转弯时,外侧的轮子比内侧的轮子要多走一些路。当赛车绕下面的运动场跑一圈时,外轮比内轮多走多少米?
50.(1)某大酒店里有一种方圆两用餐桌(即外圆中方).请你借助圆规等学具,选择相对合理数据画出这种方圆两用桌的桌面模形(要保留作图痕迹),并将正方形外的部分涂上阴影.(提示:在圆中画一个最大的正方形)
(2)如果圆桌的直径是1米,那么图中阴影部分的面积是多少平方米?
51.修路队修一条公路,第一天修了全长的40%,第二天修了全长的,第二天比第一天多修了30千米,这条公路全长多少千米?
52.摆一摆,找规律.
摆第n个图形需要用多少根火柴棒?
53.探索规律.
用小棒按照如图方式摆图形.
(1)摆1个八边形需要 根小棒,摆2个需要 根小棒,摆3个需要 根小棒.
(2)照这样摆下去:
①摆n个八边形需要多少根小棒?n=1000呢?
②64根小棒可以摆多少个八边形?
54.按图所示的方式摆放正方形.
(1)摆一个正方形需要4根小棒,摆两个正方形需要 根小棒.
(2)按照如图所示的方式继续摆正方形,摆n个正方形需多少根小棒?
55.数与形。
(1)仔细观察每幅图和它下面的算式之间的关系,根据发现的规律,接着画出后面的两个图形,并完成图形下面的算式。
(2)根据上面的规律,完成下面的算式。
1002-992=( )+( )=( )
20202-20192=( )+( )=( )
56.先画出第5个图形并填空。再想后面的第10个方框里有( )个点,第51个方框里有( )个点。
1 1+4 1+4×2 1+4×3 ( )
57.聪聪和明明在研究两个平方数的差时发现了规律:
(1)请你根据聪聪和明明发现的规律把下面的算式填写完整。
(__________+__________)×(___________-_________)
(2)求下图中阴影部分的面积。聪聪说可以用“a2-b2”来计算,明明说也可以用“(a+b)×(a-b)”来计算。你知道明明是怎么想的吗?
(3)运用上面发现的规律计算下图中扇环的面积。(单位:厘米)
58.新华书店搞促销活动,一本《格林童话》降价20%后,现在售价为24元,《格林童话》原来的售价是多少元?
59.一张桌子坐6人,两张桌子并起来坐10人,三张桌子并起来坐14人……
(1)照这样,18张桌子并成一排可以坐多少人?
(2)五(2)班有46位同学,需要多少张桌子并起来?
60.有苹果、梨、桃、枣四种水果,已知苹果和梨占总重量的,梨和桃占总重量的45%,枣占总重量的30%,又知桃比苹果多42千克。枣有多少千克?
61.某影剧院能容纳600名观众,该剧院有2个大门和4个小门。经测试,1个大门每分钟能安全通过120人,1个小门每分钟能安全通过80人。在紧急情况下,由于拥挤,大、小门通过的人数各下降30%。
(1)在正常情况下,开启所有的门,每分钟能安全通过多少人?
(2)在紧急情况下,如果要在3分钟内安全疏散全部观众,影剧院门的设计符合要求吗?
62.读书节时小明看一本故事书。第一天看了45页,第二天看了全书的,第三天看了全书的20%,这本书一共有多少页?
63.新星希望小学为了建设书香校园,从图书超市购进了科技类丛书400套,比购进的故事类丛书多,购进的连环画册又是购进故事类丛书的75%,学校购进多少套连环画册?
64.一列火车的速度是180千米时,是一架喷气式飞机的。一辆小汽车的速度是这架喷气式飞机的。这辆小汽车的速度是多少?
65.两桶油共重130千克,从甲桶取出25%倒入乙桶后,甲桶相当于乙桶的,甲、乙两桶原来各有油多少千克?
66.一堆煤,第一周烧了总数的,第二周烧了总数的25%,已知第二周比第一周多烧煤4.5吨,这堆煤共有多少吨?
67.目前,我国大部分城镇生活垃圾中,厨余垃圾约占。某镇引进厨余垃圾处理设备,集中借助生物技术处理厨余垃圾,其中10%可转化为有机肥料。某镇每天大约产生16.5吨生活垃圾,可以转化出多少吨有机肥料?
68.学龄儿童11~15岁标准体重的估算方法是:年龄×3-2。(单位:kg)
实际体重比标准体重轻(重)百分比
轻20%以上
轻11%-20%
轻10%-重10%
重11%-20%
重20%以上
等级
营养不良
偏瘦
正常
偏胖
肥胖
小东今年12岁,实际体重41千克。
(1)根据上面的估算方法,小东的标准体重应该是多少千克?
(2)小东实际体重比标准体重轻或重百分之几?(百分号前保留一位小数)
(3)小东的等级是什么?请你给他提一些建议。
69.长江小学原来平均每天产生垃圾50千克,自从开展分类投放垃圾后,现在平均每天少产生20%的垃圾,现在平均每天产生垃圾多少千克?
70.《道路交通安全法》实施条例规定:所有道路超速50%以上,扣12分;高速公路、城市快速路超速20%以上、50%以下,扣6分;高速公路、城市快速路超速20%以下,扣3分。王叔叔以90千米/时的速度在高速公路上行驶,前方出现限速80千米的标志。如果他保持这个速度继续行驶,将受到扣几分的处罚?
【参考答案】
1.90千克
【解析】
根据苹果占总水果的比重,先利用乘法将苹果的重量计算出来,再利用乘法求出今天卖出的苹果的数量即可。
288××
=108×
=90(千克)
答:今天卖出90千克苹果。
【点睛】
本
解析:90千克
【解析】
根据苹果占总水果的比重,先利用乘法将苹果的重量计算出来,再利用乘法求出今天卖出的苹果的数量即可。
288××
=108×
=90(千克)
答:今天卖出90千克苹果。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几,用乘法。
2.80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,
解析:80千米
【解析】
把甲乙两地之间的距离看作单位“1”,已经行驶的路程占全程的,已经行驶的路程=甲乙两地之间的总路程×,据此解答。
100×=80(千米)
答:行了80千米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
3.225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
解析:225棵
【解析】
桃树的棵数=梨树的棵数×,把梨树的棵数代入计算即可。
150×=225(棵)
答:桃树有225棵。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
4.200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
解析:200米
【解析】
第一天修的长度=这条路的总长度×,第二天修的长度=第一天修的长度×+50米,最后计算两天修路的长度之和。
第一天修的长度:320×=120(米)
第二天修的长度:120×+50
=30+50
=80(米)
120+80=200(米)
答:两天一共修了200米。
【点睛】
已知一个数,求这个数的几分之几是多少用分数乘法计算。
5.去文学超市购买合算。
【解析】
学海商场,现在一本的价格=原价,据此求出笔记本的总价;文学超市,先算出25本的总价,便宜了原价的五分之一,据此求出文学超市买需要的钱,再比较即可。
学海商场:4(元)
解析:去文学超市购买合算。
【解析】
学海商场,现在一本的价格=原价,据此求出笔记本的总价;文学超市,先算出25本的总价,便宜了原价的五分之一,据此求出文学超市买需要的钱,再比较即可。
学海商场:4(元)
文学超市:(元)
100-20=80(元)
90>80
答:去文学超市购买合算。
【点睛】
本题考查分数乘法,解答本题的关键是掌握题中的数量关系式。
6.144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没
解析:144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没有看。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
7.48辆
【解析】
公交车约200辆=纯电动车数量,据此解答即可。
(辆)
答:纯电动公交车有48辆。
【点睛】
本题考查分数乘法,解答本题的关键是找到题中的数量关系式。
解析:48辆
【解析】
公交车约200辆=纯电动车数量,据此解答即可。
(辆)
答:纯电动公交车有48辆。
【点睛】
本题考查分数乘法,解答本题的关键是找到题中的数量关系式。
8.36箱
【解析】
首先根据分数乘法的意义,把香蕉箱数看作单位“1”,用商场购进的香蕉的箱数乘以购进的橘子占的分率,求出购进橘子的箱数是多少;然后用它加上商场购进的香蕉的箱数,求出商场购进了香蕉和橘子
解析:36箱
【解析】
首先根据分数乘法的意义,把香蕉箱数看作单位“1”,用商场购进的香蕉的箱数乘以购进的橘子占的分率,求出购进橘子的箱数是多少;然后用它加上商场购进的香蕉的箱数,求出商场购进了香蕉和橘子一共多少箱即可。
20×+20
=16+20
=36(箱)
答:商场购进了香蕉和橘子一共36箱。
【点睛】
此题主要考查了分数乘法的意义的应用,解答此题的关键是根据分数乘法的意义,求出购进橘子的箱数是多少。
9.360千米
【解析】
乙车的速度=甲车速度×,求出乙车速度,再根据相遇路程=相遇时间×相遇速度,求出两地距离即可。
=100(千米)
(80+100)×2
=180×2
=360(千米)
答:两
解析:360千米
【解析】
乙车的速度=甲车速度×,求出乙车速度,再根据相遇路程=相遇时间×相遇速度,求出两地距离即可。
=100(千米)
(80+100)×2
=180×2
=360(千米)
答:两地相距360千米。
【点睛】
本题考查分数乘法、相遇问题,解答本题的关键是掌握相遇问题的数量关系。
10.490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键
解析:490万人
【解析】
先把上半年接待的游客量看作单位“1”,用乘法求出它的就是下半年游客量。
560×=490(万人)
答:2019年长隆海洋王国下半年接待游客490万人。
【点睛】
解答此题的关键是找到单位“1”,已知单位“1”的量,求它的几分之几是多少用乘法。
11.63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
19
解析:63万人
【解析】
“上半年接待游客数是全年的”,根据分数乘法的意义,用全年接待游客数乘,求出上半年接待游客数;“第三季度接待游客数是上半年的”,用上半年接待游客数乘,求出第三季度接待游客数。
196××
=84×
=63(万人)
答:第三季度接待游客63万人。
【点睛】
求一个数的几分之几是多少,用乘法计算。
12.30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
解析:30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
13.600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,
解析:600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
14.75本
【解析】
用120×求出二毛的课外书本数,再乘即可求出小毛的课外书本数。
120××
=90×
=75(本);
答:小毛有75本课外书。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
解析:75本
【解析】
用120×求出二毛的课外书本数,再乘即可求出小毛的课外书本数。
120××
=90×
=75(本);
答:小毛有75本课外书。
【点睛】
熟练掌握分数乘法的意义是解答本题的关键。
15.30棵
【解析】
由题意:先计算苹果树的棵数,是把桃树棵数看作单位“1”;再计算梨树的棵数,是把苹果树的棵数看作单位“1”,列综合算式为:120××。
120××
=90×
=30(棵)
答:梨树有
解析:30棵
【解析】
由题意:先计算苹果树的棵数,是把桃树棵数看作单位“1”;再计算梨树的棵数,是把苹果树的棵数看作单位“1”,列综合算式为:120××。
120××
=90×
=30(棵)
答:梨树有30棵。
【点睛】
本题中存在两个单位“1”,要能够准确区分这两个单位“1”,以及所对应的不同的数量关系。
16.12棵
【解析】
杨树20棵,柳树是杨树的,根据分数乘法的意义可知,柳树有20×棵,槐树是柳树的,则槐树有20××棵。
20××=12(棵)
答:槐树有12棵。
【点睛】
求一个数的几分之几是多少,
解析:12棵
【解析】
杨树20棵,柳树是杨树的,根据分数乘法的意义可知,柳树有20×棵,槐树是柳树的,则槐树有20××棵。
20××=12(棵)
答:槐树有12棵。
【点睛】
求一个数的几分之几是多少,用乘法。
17.9元
【解析】
39××=9(元)
答:一副陆战棋9元。
解析:9元
【解析】
39××=9(元)
答:一副陆战棋9元。
18.【解析】
小强跳的个数=小明跳的个数×,小亮跳的个数=小强跳的个数×,求小明跳的个数的的是多少用连乘计算。
=
=50(个)
答:小亮跳了50个。
【点睛】
已知一个数,求这个数的几分之几是多少
解析:
【解析】
小强跳的个数=小明跳的个数×,小亮跳的个数=小强跳的个数×,求小明跳的个数的的是多少用连乘计算。
=
=50(个)
答:小亮跳了50个。
【点睛】
已知一个数,求这个数的几分之几是多少用乘法。
19.36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用
解析:36××
【解析】
小新的邮票枚数=小林的邮票枚数×,小明的邮票枚数=小新的邮票枚数×,据此解答。
36××
=30×
=40(枚)
答:小明有40枚邮票。
【点睛】
连续求一个数的几分之几是多少用分数连乘计算。
20.480只
【解析】
把要折的纸花总数看作单位“1”,第一天完成了任务的,用纸花的总数×,求出第一天折纸花的数量;第二天完成了余下任务的,是把余下的数量看作单位“1”,先用总数减去第一天折的数量求出余
解析:480只
【解析】
把要折的纸花总数看作单位“1”,第一天完成了任务的,用纸花的总数×,求出第一天折纸花的数量;第二天完成了余下任务的,是把余下的数量看作单位“1”,先用总数减去第一天折的数量求出余下的数量,再乘,即是第二天折的数量;最后用总数分别减去第一天、第二天折的数量,求出第三天需要折纸花的数量。
第一天完成:1200×=240(只)
第二天完成:
(1200-240)×
=960×
=480(只)
第三天需完成:
1200-240-480
=960-480
=480(只)
答:第三天需要折480只才能完成任务。
【点睛】
分数乘法的意义:求一个数的几分之几是多少,用乘法计算。
21.6千米
【解析】
解析:6千米
【解析】
22.千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
解析:千米
【解析】
(1+1)÷(),
=2÷ ,
=(千米);
答:汽车往返两地平均每小时行千米.
23.上层200本,下层250本
【解析】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+)x=(450﹣x)×(1+)
x=(450﹣x)×
x=585﹣x
x=585
x=200
解析:上层200本,下层250本
【解析】
解:设上层书架原有x本书,则下层书架原有(450﹣x)本,得
(1+)x=(450﹣x)×(1+)
x=(450﹣x)×
x=585﹣x
x=585
x=200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
24.24个
【解析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率
解析:24个
【解析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率=第二天吃的个数,第一天吃的个数+第二天吃的个数即可。
12÷(1-)÷(1-)÷(1-)÷(1-)÷(1-)÷(1-)
=12÷÷÷÷÷÷
=84(个)
84×=12(个)
(84-12)×
=72×
=12(个)
12+12=24(个)
答:第一天和第二天所吃桃子的总数是24个。
【点睛】
关键是理解分数乘除法的意义,求整体用除法,求部分用乘法。
25.150页
【解析】
第一天读了这本书的,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这本书的,量率对应求 单位“1”。
(页)
答:这本故事书共有150页。
【点睛】
本题考查的是分
解析:150页
【解析】
第一天读了这本书的,第二天读了这本书的,都是以这本书为单位 “1”,那么还剩下这本书的,量率对应求 单位“1”。
(页)
答:这本故事书共有150页。
【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。
26.975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之
解析:975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之和除以(1-)即可求出全程。
×3=
(230+160)÷(1-)
=390÷
=975(千米)
答:A、B两地的距离是975千米。
【点睛】
已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”和“两车剩下的路程共占全程的(1-)”是解题的关键。
27.2套
【解析】
假设上衣每件x元,上衣单价×数量,表示出带的钱数,总价÷裤子数量=裤子单价,带的钱数÷(裤子单价+上衣单价)即可。
假设上衣每件x元。
3x÷(3x÷6+x)
=3x÷(x+x)
=
解析:2套
【解析】
假设上衣每件x元,上衣单价×数量,表示出带的钱数,总价÷裤子数量=裤子单价,带的钱数÷(裤子单价+上衣单价)即可。
假设上衣每件x元。
3x÷(3x÷6+x)
=3x÷(x+x)
=3x÷x
=2(套)
答:可以买2套运动服。
【点睛】
关键是理解单价、数量、总价之间的关系。
28.30cm
【解析】
本题可看作为重叠问题;以B为端点引出的占全长的线段BN,与以A为端点引出的占全长的线段AM,这两段线段的和就相当于在原线段的基础之上多了MN这一段;所以,线段MN所占的分率就是,
解析:30cm
【解析】
本题可看作为重叠问题;以B为端点引出的占全长的线段BN,与以A为端点引出的占全长的线段AM,这两段线段的和就相当于在原线段的基础之上多了MN这一段;所以,线段MN所占的分率就是,因为这个分率所对应的长度是14cm,因此要求出整条线段AB的长度,就列式为:。
方法一:
方法二:
解:设全长为xcm。
答:整条线段AB的长度是30cm。
【点睛】
可通过画线段图的方法,数形结合可使题意更加直观具体;且能够灵活地把AM、BN、MN几条线段适当地从原线段AB中分离出来,运用重叠问题的原理来解答。
29.9天
【解析】
(1﹣×5)÷()
=÷
=×
=9(天)
答:如果甲先独做5天,然后两队合做,还需9天才能完成.
解析:9天
【解析】
(1﹣×5)÷()
=÷
=×
=9(天)
答:如果甲先独做5天,然后两队合做,还需9天才能完成.
30.20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可
解析:20千克
【解析】
首先根据甲桶里的半桶水倒入乙桶,刚好装乙桶的,求出甲桶的容量是乙桶的÷=;然后根据把乙桶装满水倒出后,剩下12千克水,可以求出乙桶的容量为12÷(1-)=15千克,进而求出甲桶可装水多少千克即可。
乙桶能装水:
12÷(1-)
=12÷
=15(千克)
甲桶能装水的质量:
15×(÷)
=15×
=20(千克)
答:甲桶可装水20千克。
【点睛】
解答此题的关键是弄清甲桶的容量是乙桶的。
31.甲;42本
【解析】
将全部书看作单位“1”,先算出甲、乙、丙三人按原计划和实际所得书本数占全部书的分率,比较前后分率,谁的分率变少,这位小朋友就是谁;用少得的本数÷减少的分率求出总本数,总本数×实
解析:甲;42本
【解析】
将全部书看作单位“1”,先算出甲、乙、丙三人按原计划和实际所得书本数占全部书的分率,比较前后分率,谁的分率变少,这位小朋友就是谁;用少得的本数÷减少的分率求出总本数,总本数×实际所得本数分率=实际得到的本数。
原计划:
甲:5÷(5+4+3)=5÷12=
乙:4÷12=
丙:3÷12=
实际:
甲:7÷(7+6+5)=7÷18=
乙:6÷18=
丙:5÷18=
>,<,甲的分率变小。
3÷(-)
=3÷
=108(本)
108×=42(本)
答:少得3本书的是甲小朋友,他实际得到书本是42本。
【点睛】
关键是理解比意义,确定单位“1”,通过分率的变化确定变少的小朋友,部分数量÷对应分率=整体数量,整体数量×部分对应分率=部分数量。
32.20个
【解析】
甲、乙两箱球的总数不变,可以利用总数,先求出最后各自的数量,再计算甲应该拿出的数量。
(个)
答:从甲箱拿出20个球放入乙箱里才使得甲、乙两箱球的数量比是。
【点睛】
本题属
解析:20个
【解析】
甲、乙两箱球的总数不变,可以利用总数,先求出最后各自的数量,再计算甲应该拿出的数量。
(个)
答:从甲箱拿出20个球放入乙箱里才使得甲、乙两箱球的数量比是。
【点睛】
本题属于变比问题中的和不变,总数不变是求解本道题的关键。
33.390千米
【解析】
根据题意,相遇时客车和货车所行的路程比是,那速度比也是,设客车速度是,则货车速度是,两车相遇时共同行驶的时间是,相遇后客车、货车共同行驶的时间是,则客车行驶全程的距离等于货车相
解析:390千米
【解析】
根据题意,相遇时客车和货车所行的路程比是,那速度比也是,设客车速度是,则货车速度是,两车相遇时共同行驶的时间是,相遇后客车、货车共同行驶的时间是,则客车行驶全程的距离等于货车相遇时行驶的距离加货车相遇后行驶的距离,据此列方程解答。
由题意知,相遇时客车和货车所行的路程比是,那么速度比也是。
解:设客车速度是,则货车速度是。
答:甲、乙两地相距390千米。
【点睛】
解答本题要注意两点:①相遇时两车行驶路程比,也是速度比。②找出客车和货车的行驶路程等量关系式。明确这两点,本题才能得以解答。
34.1∶2
【解析】
已知四边形ABCD,E、F 分别为AD、BC 的中点,如图,连接BD,三角形ABE和三角形BDE面积相等,三角形CDF和三角形BDF面积相等,那么所构成的四边形EBFD的面积正好是
解析:1∶2
【解析】
已知四边形ABCD,E、F 分别为AD、BC 的中点,如图,连接BD,三角形ABE和三角形BDE面积相等,三角形CDF和三角形BDF面积相等,那么所构成的四边形EBFD的面积正好是四边形ABCD的一半,三角形ABE和三角形CDF的面积之和是四边形ABCD的一半。
如图所示:
四边形EBFD的
展开阅读全文