资源描述
天津市初一上学期数学期中试卷带答案完整
一、选择题
1.4的算术平方根是()
A. B. C.2 D.
2.在下列现象中,属于平移的是( ).
A.荡秋千运动
B.月亮绕地球运动
C.操场上红旗的飘动
D.教室可移动黑板的左右移动
3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中是假命题的是( )
A.对顶角相等
B.在同一平面内,垂直于同一条直线的两条直线平行
C.同旁内角互补
D.平行于同一条直线的两条直线平行
5.直线,直线与,分别交于点,,.若,则的度数为( )
A. B. C. D.
6.下列计算正确的是( )
A.=±2 B.(﹣3)0=0
C.(﹣2a2b)2=4a4b2 D.2a3÷(﹣2a)=﹣a3
7.如图,直线a∥b,∠1=74°,∠2=34°,则∠3的度数是( )
A.75° B.55° C.40° D.35°
8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为( )
A. B. C. D.
二、填空题
9.正方形木块的面积为,则它的周长为____________.
10.点A(-2,1)关于x轴对称的点的坐标是____________________.
11.如图,直线与直线交于点,、是与的角平分线,则______度.
12.如图,将三角板与两边平行的直尺()贴在一起,使三角板的直角顶点C()在直尺的一边上,若,则的度数等于________.
13.如图a是长方形纸带,将纸带沿 EF折叠成图b,再沿BF折叠成图c,若∠AEF=160°,则图 c 中的∠CFE的度数是___度.
14.已知的小数部分是,的小数部分是,则________.
15.在平面直角坐标系中,若在轴上,则线段长度为________.
16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.
三、解答题
17.计算:
(1)|﹣2|+(﹣3)2﹣;
(2);
(3).
18.求下列各式中x的值.
(1)4x2=64;
(2)3(x﹣1)3+24=0.
19.补全下面的证明过程和理由:
如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.
求证:∠A=∠F.
证明:∵∠C=∠COA,∠D=∠BOD,( )
又∵∠COA=∠BOD,( )
∴∠C= .( )
∴AC∥DF( ).
∴∠A= ( ).
∵EF∥AB,
∴∠F= ( ).
∴∠A=∠F( ).
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
21.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为<<,即2<<3,所以的整数部分为2,小数部分为(﹣2)
请解答:
(1)的整数部分是 ,小数部分是 ;
(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值.
22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.
(1)请帮小丽设计一种可行的裁剪方案;
(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.
23.如图,直线,点是、之间(不在直线,上)的一个动点.
(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;
(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;
(3)如图3,若点是下方一点,平分, 平分,已知,求的度数.
24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.
(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ;
(2)射线AF为∠CAD的角平分线.
① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;
② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 .
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据算术平方根的计算方法求解即可;
【详解】
∵,
∴4的算术平方根是2.
故答案选C.
【点睛】
本题主要考查了算术平方根的计算,准确计算是解题的关键.
2.D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室
解析:D
【分析】
根据平移的性质依次判断,即可得到答案.
【详解】
A、荡秋千运动是旋转,故本选项错误;
B、月亮绕地球运动是旋转,故本选项错误;
C、操场上红旗的飘动不是平移,故本选项错误;
D、教室可移动黑板的左右移动是平移,故本选项正确.
故选:D.
【点睛】
本题考查了平移的知识;解题的关键是熟练掌握平移性质,从而完成求解.
3.B
【分析】
互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限.
【详解】
解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数
∴
解得m=1
∴1-2m=1-2×1=-1,m=1
∴点P坐标为(-1,1)
∴点P在第二象限
故选B.
【点睛】
本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.C
【分析】
利用对顶角相等、平行线的判定与性质进行判断选择即可.
【详解】
解:A、对顶角相等,是真命题,不符合题意;
B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;
C、同旁内角互补,是假命题,符合题意;
D、平行于同一条直线的两条直线平行,真命题,不符合题意,
故选:C.
【点睛】
本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大.
5.B
【分析】
由对顶角相等得∠DFE=55°,然后利用平行线的性质,得到∠BEF=125°,即可求出的度数.
【详解】
解:由题意,根据对顶角相等,则
,
∵,
∴,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出.
6.C
【分析】
根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.
【详解】
A.原式=﹣2,故A错误;
B.原式=1,故B错误;
C、(﹣2a2b)2=4a4b2,计算正确;
D、原式=﹣a2,故D错误;
故选C.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
7.C
【分析】
根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.
【详解】
解:∵直线a∥b,∠1=74°,
∴∠4=∠1=74°,
∵∠2+∠3=∠4,
∴∠3=∠4-∠2=74°-34°=40°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.
8.D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算
解析:D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算是解题的关键.
二、填空题
9.【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x=或x=−(舍),
即正方形的边长为m,
所以周长为4cm
故答案为:
解析:
【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x=或x=−(舍),
即正方形的边长为m,
所以周长为4cm
故答案为:4.
【点睛】
本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.
10.(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本
解析:(-2,-1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.
【详解】
解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),
故答案为:(-2,-1).
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
11.60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴
解析:60
【分析】
由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.
【详解】
∵OE平分∠AOC,
∴∠AOE=∠EOC,
∵OC平分∠BOE,
∴∠EOC=∠COB
∴∠AOE=∠EOC=∠COB,
∵∠AOE+∠EOC+∠COB=180︒
∴∠COB=60°,
∴∠AOD=∠COB=60°,
故答案为:60
【点睛】
本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.
12.35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
解析:35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
13.120
【分析】
先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC,最后根据即可解题.
【详解】
折叠
∴∠DEF==,
∴
解析:120
【分析】
先根据平行线的性质,设,根据图形折叠的性质得出=,再由三角形外角的性质解得,再由平行线的性质得出∠GFC,最后根据即可解题.
【详解】
折叠
∴∠DEF==,
∴
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
14.1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解析:1
【分析】
根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果.
【详解】
解:∵4<7<9,
∴2<<3,∴-3<-<-2,
∴7<5+<8,2<5-<3,
∴5+的整数部分是7,5-的整数部分为2,
∴a=5+-7=-2,b=5--2=3-,
∴12019=1.
故答案为:1.
【点睛】
此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.
15.5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查
解析:5
【分析】
先根据在轴上,计算出m的值,根据纵坐标的绝对值即是线段长度可得到答案.
【详解】
∵在轴上,
∴横坐标为0,即,
解得:,
故,
∴线段长度为,
故答案为:5.
【点睛】
本题只要考查了再y轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.
16.(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4
解析:(10,44)
【分析】
该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An时所用的间分别为a1,a2,…an,则a1=2,a2=6,a3=12,a4=20,…,
【详解】
解:由题意,粒子运动到点(3,0)时经过了15秒,
设粒子运动到A1,A2,…,An时所用的间分别为a1,a2,…,an,
则a1=2,a2=6,a3=12,a4=20,…,
a2-a1=2×2,
a3-a2=2×3,
a4-a3=2×4,
…,
an-an-1=2n,
各式相加得:
an-a1=2(2+3+4+…+n)=n2+n-2,
∴an=n(n+1).
∵44×45=1980,故运动了1980秒时它到点A44(44,44);
又由运动规律知:A1,A2,…,An中,奇数点处向下运动,偶数点处向左运动.
故达到A44(44,44)时向左运动34秒到达点(10,44),
即运动了2014秒.所求点应为(10,44).
故答案为:(10,44).
故答案为:15,(10,44).
【点睛】
本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式an-an-1=2n是本题的突破口,本题对运动规律的探索可知知:A1,A2,…An中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.
三、解答题
17.(1)9;(2)-;(3)-3.
【解析】
【分析】
根据运算法则和运算顺序,依次计算即可.
【详解】
解:(1)原式=2+9﹣2=9,
(2)原式=(1+3﹣5) =﹣ ,
(3)原式=3﹣3﹣4
解析:(1)9;(2)-;(3)-3.
【解析】
【分析】
根据运算法则和运算顺序,依次计算即可.
【详解】
解:(1)原式=2+9﹣2=9,
(2)原式=(1+3﹣5) =﹣ ,
(3)原式=3﹣3﹣4+1=﹣3.
【点睛】
本题考查了实数的运算,熟练掌握相关运算法则是解题关键.
18.(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)
解析:(1)x=±4;(2)x=-1
【分析】
(1)根据平方根的定义解方程即可;
(2)根据立方根的定义解方程即可.
【详解】
解:(1)4x2=64,
∴x2=16,
∴x=±4;
(2)3(x-1)3+24=0,
∴3(x-1)3=-24,
∴(x-1)3=-8,
∴x-1=-2,
∴x=-1.
【点睛】
本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.
19.见解析
【分析】
根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.
【详解】
解:∵∠C=∠COA,∠D=∠BOD(已知),
解析:见解析
【分析】
根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.
【详解】
解:∵∠C=∠COA,∠D=∠BOD(已知),
又∵∠COA=∠BOD(对顶角相等),
∴∠C=∠D(等量代换).
∴AC∥DF(内错角相等,两直线平行).
∴∠A=∠ABD(两直线平行,内错角相等).
∵EF∥AB,
∴∠F=∠ABD(两直线平行,内错角相等).
∴∠A=∠F(等量代换).
故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换.
【点睛】
本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
21.(1)3, ﹣3;(2)1.
【分析】
(1)根据解答即可;
(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.
【详解】
(1)∵,
∴的整数部分是3,小数部分是﹣3,
解析:(1)3, ﹣3;(2)1.
【分析】
(1)根据解答即可;
(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.
【详解】
(1)∵,
∴的整数部分是3,小数部分是﹣3,
故答案为:3,﹣3;
(2)∵2<<3,a=﹣2,
∵3<<4,
∴b=3,
a+b﹣=﹣2+3﹣=1.
【点睛】
此题考查无理数的估算,正确掌握数的平方是解题的关键.
22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.
【解析】
(1)解:设面积为400cm2的正方形纸片的边长为a cm
∴
解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.
【解析】
(1)解:设面积为400cm2的正方形纸片的边长为a cm
∴a2=400
又∵a>0
∴a=20
又∵要裁出的长方形面积为300cm2
∴若以原正方形纸片的边长为长方形的长,
则长方形的宽为:300÷20=15(cm)
∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形
(2)∵长方形纸片的长宽之比为3:2
∴设长方形纸片的长为3xcm,则宽为2xcm
∴6x 2=300
∴x 2=50
又∵x>0
∴x =
∴长方形纸片的长为
又∵>202
即:>20
∴小丽不能用这块纸片裁出符合要求的纸片
23.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
解析:(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),
∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),
∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-∠CDG,
由(1)可得,∠PDC+∠CEM=∠C=90°,
∴∠AEN=∠CEM,
∴,
(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.
24.(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,
解析:(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.
【详解】
.
解:(1)设在上有一点N在点A的右侧,如图所示:
∵
∴,
∴
∴
(2)①.
证明:设,.
∴.
∵为的角平分线,
∴.
∵,
∴.
∴.
∴.
②当点在点右侧时,如图:
由①得:
又∵
∴
∵
∴
当点在点左侧,在右侧时,如图:
∵为的角平分线
∴
∵
∴,
∵
∴
∴
∵
∴
又∵
∴
∴
当点和在点左侧时,设在上有一点在点的右侧如图:
此时仍有,
∴
∴
综合所述:或
【点睛】
本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.
展开阅读全文