1、一、解答题1如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CBy轴交y轴负半轴于B(0,b),且|a3|+(b+4)20,S四边形AOBC16(1)求点C的坐标(2)如图2,设D为线段OB上一动点,当ADAC时,ODA的角平分线与CAE的角平分线的反向延长线交于点P,求APD的度数;(点E在x轴的正半轴)(3)如图3,当点D在线段OB上运动时,作DMAD交BC于M点,BMD、DAO的平分线交于N点,则点D在运动过程中,N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由2如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分
2、;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围3已知,点为平面内一点,于(1)如图1,求证:;(2)如图2,过点作的延长线于点,求证:;(3)如图3,在(2)问的条件下,点、在上,连接、,且平分,平分,若,求的度数4汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤
3、是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?5(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数6已知,(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数
4、7据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_(3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=_;8规律探究,观察下列等式:第1个等式:第2个等式:第3个等式:第4个等式:请回答下列问题:(1)
5、按以上规律写出第5个等式:= _ = _ (2)用含n的式子表示第n个等式:= _ = _(n为正整数)(3)求9先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表)QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526给出一个变换公式:将明文转成密文,如,即变为:,即A变为S将密文转成成明文,如,即变为:,即D变为F(1)按上述方法将明文译为密文(2)若按上方法将明文译
6、成的密文为,请找出它的明文10我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等(1)2020属于 类(填A,B或C);(2)从A类数中任取两个数,则它们的和属于 类(填A,B或C); 从A、B类数中任取一数,则它们的和属于 类(填A,B或C); 从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数
7、,把它们都加起来,则最后的结果属于 类(填A,B或C);(3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号)属于C类;属于A类;,属于同一类11我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算定义:如果(a0,a1,N0),那么b叫做以a为底N的对数,记作例如:因为,所以;因为,所以根据“对数”运算的定义,回答下列问题:(1)填空: , (2)如果,求m的值(3)对于“对数”运算,小明同学认为有“(a0,a1,M0,N0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并
8、加以改正12给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)的值为_ ,的值为_ (2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.判断这三个数中哪些与“模二相加不变”,并说明理由;与“模二相
9、加不变”的两位数有_个13如图,已知点,点,且,满足关系式(1)求点、的坐标;(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、试探究,之间的数量关系;(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标14如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(
10、5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间15如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、.(1)若在轴上存在点,连接,使SABM =SABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=SPCD+SPOB的取值范围;(3)若在直线上运动,请直接写出的数量关系.16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解,所以与存
11、在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿ABCE运动,最终到达点E设点P运动的时间为t秒(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P
12、在不同线段上的坐标(2)在(1)相同条件得到的结论下,是否存在P点使APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由18如图1,已知,点A(1,a),AHx轴,垂足为H,将线段AO平移至线段BC,点B(b,0),其中点A与点B对应,点O与点C对应,a、b满足(1)填空:直接写出A、B、C三点的坐标A(_)、B(_)、C(_);直接写出三角形AOH的面积_(2)如图1,若点D(m,n)在线段OA上,证明:4mn(3)如图2,连OC,动点P从点B开始在x轴上以每秒2个单位的速度向左运动,同时点Q从点O开始在y轴上以每秒1个单位的速度向下运动若经过t秒,三角形AOP与三角形
13、COQ的面积相等,试求t的值及点P的坐标19我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用20两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能20某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如
14、果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案21如图,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3)求的度数22数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n(1)由题意得:点A是点
15、B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=_(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n(3)若AM=BN,MN=BM,求m和n值23学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理由24用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无
16、盖的长方体容器,(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完则的值可能是( )A2019 B2020 C2021 D2022(3)给长方体容器加盖可以加工成铁盒先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?25阅读材料:关于x,y的二元一次方程ax+by=
17、c有一组整数解,则方程ax+by=c的全部整数解可表示为(t为整数)问题:求方程7x+19y=213的所有正整数解小明参考阅读材料,解决该问题如下:解:该方程一组整数解为,则全部整数解可表示为(t为整数)因为解得因为t为整数,所以t=0或-1所以该方程的正整数解为和 (1)方程3x-5y=11的全部整数解表示为:(t为整数),则= ;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组? 请直接写出答案26某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子(1)若现有A型板材150张,B
18、型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?27小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计)如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面
19、是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等则该茶叶盒的容积是多少?(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?28中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五
20、折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29阅读下列材料: 我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离; 例 1解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为 例 2解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此
21、不等式的解集为或参考阅读材料,解答下列问题: (1)方程的解为 ; (2)解不等式:; (3)解不等式:30如图,已知点,(1)求的面积;(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标_(用含的式子表示)【参考答案】*试卷处理标记,请不要删除一、解答题1(1) C(5,4);(2)90;(3)见解析.【详解】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可详解:(1
22、)(a3)2+|b+4|=0,a3=0,b+4=0,a=3,b=4,A(3,0),B(0,4),OA=3,OB=4,S四边形AOBC=160.5(OA+BC)OB=16,0.5(3+BC)4=16,BC=5,C是第四象限一点,CBy轴,C(5,4);(2)如图,延长CA,AF是CAE的角平分线,CAF=0.5CAE,CAE=OAG,CAF=0.5OAG,ADAC,DAO+OAG=PAD+PAG=90,AOD=90,DAO+ADO=90,ADO=OAG,CAF=0.5ADO,DP是ODA的角平分线,ADO=2ADP,CAF=ADP,CAF=PAG,PAG=ADP,APD=180(ADP+PAD)
23、=180(PAG+PAD)=18090=90即:APD=90(3)不变,ANM=45理由:如图,AOD=90,ADO+DAO=90,DMAD,ADO+BDM=90,DAO=BDM,NA是OAD的平分线,DAN=0.5DAO=0.5BDM,CBy轴,BDM+BMD=90,DAN=0.5(90BMD),MN是BMD的角平分线,DMN=0.5BMD,DAN+DMN=0.5(90BMD)+0.5BMD=45在DAM中,ADM=90,DAM+DMA=90,在AMN中,ANM=180(NAM+NMA)=180(DAN+DAM+DMN+DMA)=180(DAN+DMN)+(DAM+DMA) =180(45+
24、90)=45,D点在运动过程中,N的大小不变,求出其值为45点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.2(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理
25、的辅助线是解题的关键3(1)见解析;(2)见解析;(3)【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可;(3)设DBE=a,则BFC=3a,根据角平分线的定义可得ABD=C=2a,FBC=DBC=a+45,根据三角形内角和可得BFC+FBC+BCF=180,可得AFC=BCF的度数表达式,再根据平行的性质可得AFC+NCF=180,代入即可算出a的度数,进而完成解答【详解】(1)证明:,于,;(2)证明:过作,又,;(3)设DBE=a,则BFC=3a,BE平分ABD,ABD=C=2a,又ABBC,BF平分DBC,DBC=AB
26、D+ABC=2a+90,即:FBC=DBC=a+45又BFC+FBC+BCF=180,即:3a+a+45+BCF=180BCF=135-4a,AFC=BCF=135-4a,又AM/CN,AFC+ NCF=180,即:AFC+BCN+BCF=180,135-4a+135-4a+2a=180,解得a=15,ABE=15,EBC=ABE+ABC=15+90=105【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键4(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的
27、条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键5(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判
28、定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+F
29、PE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G180(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键6(1)见解析;(2)【分析】(1)根据平行线的性质
30、得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E作,延长DC至Q,过点M作,根据平行线的性质及等量代换可得出,再根据平角的含义得出,然后根据平行线的性质及角平分线的定义可推出;设,根据角的和差可得出,结合已知条件可求得,最后根据垂线的含义及平行线的性质,即可得出答案【详解】(1)证明:;(2)过点E作,延长DC至Q,过点M作,AF平分FH平分设,【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键7(1)两;(2)2,3;(3)24,-48【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续
31、分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论【详解】解:(1)由103=1000,1003=1000000,100032768100000,10100,是两位数;故答案为:两;(2)只有个位数是2的立方数是个位数是8,的个位上的数是2划去32768后面的三位数768得到32,因为33=27,43=64,273264,3040的十位上的数是3故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两位数;只有个位数是4的立方数是个位数是4,的个位上的数是4划去13824后面的三位数824得到13,因
32、为23=8,33=27,81327,2030=24;由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的立方数是个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,因为43=64,53=125,64110125,4050=-48;故答案为:24,-48【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数8(1);(2);(3).【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)
33、利用题(2)的结论,先写出中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为则第5个式子为:故应填:;(2)第1个等式的分母为:第2个等式的分母为:第3个等式的分母为:第4个等式的分母为:归纳类推得,第n个等式的分母为:则第n个等式为:(n为正整数)故应填:;(3)由(2)的结论得:则.【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.9(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C【分析】(1)由图表找出N,E,T对应的自然数,再根据变换公式变成密文.(2
34、)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET转换成密文:即N,E,T密文为M,Q,P;(2)将密文D,W,N转换成明文:即密文D,W,N的明文为F,Y,C【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换10(1)A;(2)B;C;B;(3)【分析】(1)计算,结合计算结果即可进行判断;(2)从A类数中任取两个数进行计算,即可求解;从A、B两类数中任取两个数进行计算,即可求解;根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相
35、加,再除以3,即可得到答案;(3)根据m,n的余数之和,举例,观察即可判断【详解】解:(1)根据题意,2020被3除余数为1,属于A类;故答案为:A(2)从A类数中任取两个数,如:(1+4)3=12,(4+7)3=32,两个A类数的和被3除余数为2,则它们的和属于B类;从A、B类数中任取一数,与同理,如:(1+2)3=1,(1+5)3=2,(4+5)3=3,从A、B类数中任取一数,则它们的和属于C类;从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则,余数为2,属于B类;故答案为:B;C;B(3)从A类数中任意取出m个数,从B类数中任意取出n个
36、数,余数之和为:m1+n2=m+2n,最后的结果属于C类,m+2n能被3整除,即m+2n属于C类,正确;若m=1,n=1,则|mn|=0,不属于B类,错误;观察可发现若m+2n属于C类,m,n必须是同一类,正确;综上,正确故答案为:【点睛】本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答11(1)1,4;(2)m=10 ;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据axay=ax+y知ax+y
37、=MN,继而得logaMN=x+y,据此即可得证试题解析:解:(1)61=6,34=81,log66=1,log381=4故答案为:1,4;(2)log2(m2)=3,m2=23,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a0,a1,M、N均为正数)axay=,=MN,logaMN=x+y,即logaMN=logaM+logaN点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题12(1)1011,1101;(2)12,65,97,见解析,38【分析】(1) 根据“模二数”的定义计算即可;(2) 根据“模二数”和模
38、二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数【详解】解: (1) ,故答案为:, ,与满足“模二相加不变”.,与不满足“模二相加不变”.,与满足“模二相加不变”当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;当a为偶数,b为偶数时,与满足“模二相加不变”有12个(28、48、68不符合)当a为偶数,b为奇数时,与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a为奇数,b为奇数时,
39、与不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a为奇数,b为偶数时,与满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法能够理解定义是解题的关键13(1);(2);(3),点C的坐标为【分析】(1)由题意易得,然后可求a、b的值,进而问题可求解;(2)由(1)及题意易得,然后根据建立方程求解即可;(3)分别过点作轴于点P,轴于点Q,由题意易得,然后可得,进而可求t的值,最后根据(
40、2)可得三角形的面积为3,则问题可求解【详解】解:(1),点,点;(2)由(1)可得点,点,轴于点,轴于点,轴于点,且,化简得;(3)分别过点作轴于点P,轴于点Q,如图所示:线段以每秒2个单位长度的速度向左水平移动到线段,时间为,三角形和三角形的面积相等,解得:,由(2)可得三角形的面积为,三角形的面积为3,即,【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟练掌握图形与坐标、算术平方根与偶次幂的非负性及等积法是解题的关键14(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)
41、如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQE