收藏 分销(赏)

行列式的计算方法总结.doc

上传人:天**** 文档编号:4894805 上传时间:2024-10-17 格式:DOC 页数:5 大小:188.55KB
下载 相关 举报
行列式的计算方法总结.doc_第1页
第1页 / 共5页
行列式的计算方法总结.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
行列式的计算方法总结: 1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace定理). 几个特别的行列式: ,,其中分别是阶的方阵. 例子: , 利用Laplace定理,按第行展开,除级子式外其余由第行所得的级子式均为零. 故,此为递推公式,应用可得 . 3. 箭头形行列式或者可以化为箭头形的行列式. 例: -----() --------(每一列提出相应的公因子) --------(将第列加到第一列) . 其它的例子:特点是除了主对角线,其余位置上的元素各行或各列都相同. ,. 4. 逐行逐列相减法.行列式特点是每相邻两行(列)之间有许多元素相同.用逐行(列)相减可以化出零. 5. 升阶法(或加边法, 添加一行一列,利于计算,但同时保持行列式不变). 例子: . 例子: 6. 利用范德蒙德行列式. 计算行列式: 解: 令: ,这是一个级范德蒙德行列式. 一方面,由范德蒙德行列式得.可看做是关于的一个次多项式. 另一方面,将按最后一列展开,可得一个关于的多项式,其中的系数与所求行列式的关系为. 由来计算的系数得:, 故有 其它的例子: ……每一行提公因子, 7.利用数学归纳法证明行列式.(对行列式的级数归纳) 证明当时, 证明时,将按第一行(或第一列)展开得,利用归纳假设可得. 8. 利用递推公式. 例子: 计算行列式 解: 按第一行展开得: ,将此式化为: (1) 或 (2) 利用递推公式(1)得: ,即. (3) 利用递推公式(2)得: ,即. (4) 由(3)(4) 解得: 其它的例子 ,按第一行展开可得 ,此时令则, 变形为,此为递推公式.利用刚才的例子可求得结果. 这里即是方程的两个根. 9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解成两个容易求的行列式的和. 例子: : 除第一行外,其余各行加上第一行的倍,所得行列式按第一列展开,按第一列展开. , 故, 由的对称性质,亦可得,这两个式子中削去,可得结论, . 注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点,选择合适的计算方法. (2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综合运用以上方法,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服