资源描述
数学七年级数学下册期中复习重点人教
一、选择题
1.9的算术平方根是()
A.81 B.3 C. D.4
2.在下面的四幅图案中,能通过图案(1)平移得到的是( )
A. B. C. D.
3.已知点P的坐标为,则点P在第( )象限.
A.一 B.二 C.三 D.四
4.在以下三个命题中,正确的命题有( )
①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c相交
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ互补
A.② B.①② C.②③ D.①②③
5.如图,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
6.下列结论正确的是( )
A.64的立方根是±4
B.﹣没有立方根
C.立方根等于本身的数是0
D.=﹣3
7.如图,AB//CD,AD⊥AC,∠ACD=53°,则∠BAD的度数为( )
A.53° B.47° C.43° D.37°
8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )
A.(2018,1) B.(4034π+1,1) C.(2017,1) D.(4034π,1)
二、填空题
9.若则 ________.
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
11.如图,是的两条角平分线,,则的度数为_________.
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
13.如图1是的一张纸条,按图1→图2→图3,把这一纸条先沿折叠并压平,再沿折叠并压平,若图2中,则图3中的度数为_______.
14.已知a,b为两个连续的整数,且,则的平方根为___________.
15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________.
16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________.
三、解答题
17.计算:
(1).
(2)﹣12+(﹣2)3× .
18.求下列各式中的的值:
(1);
(2).
19.填空并完成以下过程:
已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.
请你说明:∠E=∠F.
解:∵∠BAP +∠APD=180°,(_______)
∴AB∥_______,(___________)
∴∠BAP=________,(__________)
又∵∠1=∠2,(已知)
∠3=________-∠1,
∠4=_______-∠2,
∴∠3=________,(等式的性质)
∴AE∥PF,(____________)
∴∠E=∠F.(___________)
20.在图所示的平面直角坐标系中表示下面各点:;;;;;
(1)点到原点的距离是________;
(2)将点向轴的负方向平移个单位,则它与点________重合;
(3)连接,则直线与轴是什么关系?
(4)点分别到、轴的距离是多少?
21.已知的整数部分是a,小数部分是b,求a+ 的值。
的整数部分是2,所以的小数部分是 −2,所以a=2,b=−2,
a+,
请根据以上解题提示,解答下题:
已知9+ 与9−的小数部分分别为a,b,求ab−4a+3b−2的值.
22.有一块面积为100cm2的正方形纸片.
(1)该正方形纸片的边长为 cm(直接写出结果);
(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3.小丽能用这块纸片裁剪出符合要求的纸片吗?
23.如图①,将一张长方形纸片沿对折,使落在的位置;
(1)若的度数为,试求的度数(用含的代数式表示);
(2)如图②,再将纸片沿对折,使得落在的位置.
①若,的度数为,试求的度数(用含的代数式表示);
②若,的度数比的度数大,试计算的度数.
24.如图,在中,与的角平分线交于点.
(1)若,则 ;
(2)若,则 ;
(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则 .
【参考答案】
一、选择题
1.B
解析:B
【分析】
如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为.
【详解】
解:=3,
故选:B.
【点睛】
本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别.
2.C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题
解析:C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题意;
C、可通过平移得到,符合题意;
D、对应点的连线相交,不能通过平移得到,不符合题意;
故选:C.
【点睛】
本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.
3.B
【分析】
直接利用第二象限内的点:横坐标小于0,纵坐标大于0,即可得出答案.
【详解】
解:∵点P的坐标为P(-2,4),
∴点P在第二象限.
故选:B.
【点睛】
此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.
4.A
【分析】
根据直线与直线的位置关系、平行线的判定定理和同角的补角相等逐一判断即可.
【详解】
解:①a,b,c是三条不同的直线,若a与b相交,b与c相交,则a与c不一定相交,如下图所示,故①错误;
②a,b,c是三条不同的直线,若a∥b,b∥c,则a∥c,故②正确;
③若∠α与∠β互补,∠β与∠γ互补,则∠a与∠γ相等,故③错误
综上:正确的命题是②.
故选A.
【点睛】
此题考查的是直线的位置关系的判断和补角的性质,掌握直线与直线的位置关系、平行线的判定定理和同角的补角相等是解决此题的关键.
5.D
【分析】
根据平行线的性质可得,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.
【详解】
解:,,
,
平分,
,故①正确;
,
,
,故②正确;
,,
,故③正确;
,,
,故④正确.
正确为①②③④,
故选:D.
【点睛】
本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.
6.D
【分析】
利用立方根的定义及求法分别判断后即可确定正确的选项.
【详解】
解:A、64的立方根是4,原说法错误,故这个选项不符合题意;
B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;
C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;
D、=﹣3,原说法正确,故这个选项符合题意;
故选:D.
【点睛】
本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.
7.D
【分析】
因为AD⊥AC,所以∠CAD=90°.由AB//CD,得∠BAC=180°﹣∠ACD,进而求得∠BAD的度数.
【详解】
解:∵AB//CD,
∴∠ACD+∠BAC=180°.
∴∠CAB=180°﹣∠ACD=180°﹣53°=127°.
又∵AD⊥AC,
∴∠CAD=90°.
∴∠BAD=∠CAB﹣∠CAD=127°﹣90°=37°.
故选:D.
【点睛】
本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.
8.B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1
解析:B
【分析】
首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.
【详解】
解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,
∴圆心坐标(1,1).
∵圆向x轴正方向滚动2017圈,
∴圆沿x轴正方向平移个单位长度.
∴圆心沿x轴正方向平移个单位长度.
∴平移后圆心坐标.
故选:B.
【点睛】
本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.
二、填空题
9.【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
解析:
【分析】
根据平方与二次根式的非负性即可求解.
【详解】
依题意得2a+3=0.b-2=0,
解得a=-,b=2,
∴==
【点睛】
此题主要考查实数的性质,解题的关键是熟知实数的性质.
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
11.140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详
解析:140°.
【分析】
△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.
【详解】
△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,
∵BO、CO是∠ABC,∠ACB的两条角平分线.
∴∠OBC=∠ABC,∠OCB=∠ACB,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=40°,
在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.
故填:140°.
【点睛】
本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
13.15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°
解析:15°
【分析】
利用“两直线平行,同旁内角互补”可求出∠BFE,利用折叠的性质求出∠BFC的度数,再利用角的和差求出∠CFE.
【详解】
解:∵AE∥BF,
∴∠BFE=180°-∠AEF=65°,
∵2∠BFE+∠BFC=180°,
∴∠BFC=180°-2∠BFE=50°,
∴∠CFE=∠BFE-∠BFC=15°,
故答案为:15°.
【点睛】
本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE的度数是解题的关键.
14.±3
【分析】
分别算出a,b计算即可;
【详解】
∵a,b为两个连续的整数,且,
∴,
∴,
∴,,
∴,
∴的平方根为±3;
故答案是:±3.
【点睛】
本题主要考查了无理数的估算和求一个数的平
解析:±3
【分析】
分别算出a,b计算即可;
【详解】
∵a,b为两个连续的整数,且,
∴,
∴,
∴,,
∴,
∴的平方根为±3;
故答案是:±3.
【点睛】
本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键.
15.(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐
解析:(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐标为(-4,3)
故答案为:(-4,3) .
【点睛】
本题考查点的坐标,利用数形结合思想解题是关键.
16.(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A
解析:(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.
【详解】
解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,
∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),
∵2021=505×4+1,
∴A2021(-506,-506),
故答案为:(-506,-506).
【点睛】
本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.
三、解答题
17.(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-
解析:(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-(-3)=3-6+3=0;
(2)原式= -1+(-8)× -(-3)×(- )=-1-1-1=-3.
故答案为(1)0;(2)-3.
【点睛】
本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.
18.(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
解析:(1);(2).
【分析】
(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;
(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.
【详解】
解:(1),
,
,
;
(2),
,
,
解得:.
【点睛】
此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.
19.已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等.
【分析】
根据平行线的性质和判定即可解决问题;
【详
解析:已知;CD;同旁内角互补两直线平行;∠APC;两直线平行内错角相等;已知;∠BAP;∠APC;∠4;内错角相等两直线平行;两直线平行内错角相等.
【分析】
根据平行线的性质和判定即可解决问题;
【详解】
解:∵∠BAP+∠APD=180°(已知),
∴AB∥CD.(同旁内角互补两直线平行),
∴∠BAP=∠APC.(两直线平行内错角相等),
又∵∠1=∠2,(已知),
∠3=∠BAP-∠1,
∠4=∠APC-∠2,
∴∠3=∠4(等式的性质),
∴AE∥PF.(内错角相等两直线平行),
∴∠E=∠F.(两直线平行内错角相等).
【点睛】
本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键.
20.(1)3;(2)C;(3)平行;(4)7,5
【分析】
先在平面直角坐标中描点.
(1)根据两点的距离公式可得A点到原点O的距离;
(2)找到点B向x轴的负方向平移6个单位的点即为所求;
(3)横坐
解析:(1)3;(2)C;(3)平行;(4)7,5
【分析】
先在平面直角坐标中描点.
(1)根据两点的距离公式可得A点到原点O的距离;
(2)找到点B向x轴的负方向平移6个单位的点即为所求;
(3)横坐标相同的两点所在的直线与y轴平行;
(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.
【详解】
解:(1)∵A(0,3),
∴A点到原点O的距离是3;
(2)将点B向x轴的负方向平移6个单位,
则坐标为(-3,-5),与点C重合;
(3)如图,BD与y轴平行;
(4)∵E(5,7),
∴点E到x轴的距离是7,到y轴的距离是5.
【点睛】
本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.
21.-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−
解析:-3.
【解析】
【分析】
根据题意可以分别求得a、b的值,然后代入ab-4a+3b-2,即可解答本题.
【详解】
∵9+ 与9−的小数部分分别为a,b,
∴a=9+−12=−3,b=9−−5=4−,
∴ab−4a+3b−2=(−3)(4−)−4(−3)+3(4-)-2=7-13-12-4+12+12-3-2=-3.
【点睛】
此题考查估算无理数的大小,解题关键在于分别求得a、b的值.
22.(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算
解析:(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片.
【分析】
(1)根据算术平方根的定义直接得出;
(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案.
【详解】
解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;
故答案为:10;
(2)∵长方形纸片的长宽之比为4:3,
∴设长方形纸片的长为4xcm,则宽为3xcm,
则4x•3x=90,
∴12x2=90,
∴x2=,
解得:x=或x=-(负值不符合题意,舍去),
∴长方形纸片的长为2cm,
∵5<<6,
∴10<2,
∴小丽不能用这块纸片裁出符合要求的纸片.
【点睛】
本题考查了算术平方根.解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
23.(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义
解析:(1) ;(2)① ;②
【分析】
(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE,再根据平角的定义求解即可;
(2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;
②由(1)知,∠BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解.
【详解】
解:(1)如图,由题意可知,
∴,
∵,
∴,
,
由折叠可知.
(2)①由题(1)可知 ,
∵,
,
再由折叠可知:
,
;
②由可知:,
由(1)知,
,
又的度数比的度数大,
,
,
,
.
【点睛】
此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.
24.(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平
解析:(1)110(2)(90 +n)(3)×90°+n°
【分析】
(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;
(2)根据BO、CO分别是∠ABC与∠ACB的角平分线,用n°的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数;
(3)根据规律直接计算即可.
【详解】
解:(1)∵∠A=40°,
∴∠ABC+∠ACB=140°,
∵点O是∠AB故答案为:110°;C与∠ACB的角平分线的交点,
∴∠OBC+∠OCB=70°,
∴∠BOC=110°.
(2)∵∠A=n°,
∴∠ABC+∠ACB=180°-n°,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=∠ABC+∠ACB
=(∠ABC+∠ACB)
=(180°﹣n°)
=90°﹣n°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.
故答案为:(90+n);
(3)由(2)得∠O=90°+n°,
∵∠ABO的平分线与∠ACO的平分线交于点O1,
∴∠O1BC=∠ABC,∠O1CB=∠ACB,
∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,
同理,∠O2=×180°+n°,
∴∠On=×180°+ n°,
∴∠O2017=×180°+n°,
故答案为:×90°+n°.
【点睛】
本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.
展开阅读全文