资源描述
中考数学与二次函数有关的压轴题含详细答案
一、二次函数
1.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【解析】
【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.
【详解】(1)∵点A的坐标为(﹣1,0),
∴OA=1,
∴OC=3OA,
∴点C的坐标为(0,3),
将A、C坐标代入y=ax2﹣2ax+c,得:,
解得:,
∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
所以点G的坐标为(1,4);
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,
过点G′作G′D⊥x轴于点D,设BD′=m,
∵△A′B′G′为等边三角形,
∴G′D=B′D=m,
则点B′的坐标为(m+1,0),点G′的坐标为(1,m),
将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:
,
解得:(舍),,
∴k=1;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),
∴PQ=OA=1,
∵∠AOQ、∠PQN均为钝角,
∴△AOQ≌△PQN,
如图2,延长PQ交直线y=﹣1于点H,
则∠QHN=∠OMQ=90°,
又∵△AOQ≌△PQN,
∴OQ=QN,∠AOQ=∠PQN,
∴∠MOQ=∠HQN,
∴△OQM≌△QNH(AAS),
∴OM=QH,即x=﹣x2+2x+2+1,
解得:x=(负值舍去),
当x=时,HN=QM=﹣x2+2x+2=,点M(,0),
∴点N坐标为(+,﹣1),即(,﹣1);
或(﹣,﹣1),即(1,﹣1);
如图3,
同理可得△OQM≌△PNH,
∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,
解得:x=﹣1(舍)或x=4,
当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,
∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);
综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【点睛】本题考查的是二次函数的综合题,涉及到的知识有待定系数法、等边三角形的性质、全等三角形的判定与性质等,熟练掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质、运用分类讨论思想是解题的关键.
2.一座拱桥的轮廓是抛物线型(如图所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是的形式.请根据所给的数据求出a,c的值.
(2)求支柱MN的长度.
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
【答案】(1)y=-x2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.
【解析】
试题分析:(1)根据题目可知A.B,C的坐标,设出抛物线的解析式代入可求解.
(2)设N点的坐标为(5,yN)可求出支柱MN的长度.
(3)设DN是隔离带的宽,NG是三辆车的宽度和.做GH垂直AB交抛物线于H则可求解.
试题解析: (1) 根据题目条件,A、B、C的坐标分别是(-10,0)、(0,6)、(10,0).
将B、C的坐标代入,得
解得.
∴抛物线的表达式是.
(2) 可设N(5,),
于是.
从而支柱MN的长度是10-4.5=5.5米.
(3) 设DE是隔离带的宽,EG是三辆车的宽度和,
则G点坐标是(7,0)(7=2÷2+2×3).
过G点作GH垂直AB交抛物线于H,则.
根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.
3.如图所示,已知平面直角坐标系xOy,抛物线过点A(4,0)、B(1,3)
(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.
【答案】(1)y=-,对称轴为:x=2,顶点坐标为:(2,4)
(2)m、n的值分别为 5,-5
【解析】
(1) 将点A(4,0)、B(1,3) 的坐标分别代入y=-x2+bx+c,得:
4b+c-16=0,b+c-1="3" ,
解得:b="4" , c=0.
所以抛物线的表达式为:.
y=-,
所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).
(2) 由题可知,E、F点坐标分别为(4-m,n),(m-4,n).
三角形POF的面积为:1/2×4×|n|= 2|n|,
三角形AOP的面积为:1/2×4×|n|= 2|n|,
四边形OAPF的面积= 三角形POF的面积+三角形AOP的面积=20,
所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)
又n=-+4m,
所以-4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)
故所求m、n的值分别为 5,-5.
4.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表:
时间(天)
1
3
6
10
36
…
日销售量(件)
94
90
84
76
24
…
未来40天内,前20天每天的价格y1(元/件)与t时间(天)的函数关系式为:y1=t+25(1≤t≤20且t为整数);后20天每天的价格y2(原/件)与t时间(天)的函数关系式为:y2=—t+40(21≤t≤40且t为整数).下面我们来研究 这种商品的有关问题.
(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数 、反比例函数的知识确定一个满足这些数据之间的函数关系式;
(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?
(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.
【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.
【解析】
分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;
(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;
(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围 .
详解:(1)设数m=kt+b,有,解得
∴m=-2t+96,经检验,其他点的坐标均适合以上
析式故所求函数的解析式为m=-2t+96.
(2)设日销售利润为P,
由P=(-2t+96)=t2-88t+1920=(t-44)2-16,
∵21≤t≤40且对称轴为t=44,
∴函数P在21≤t≤40上随t的增大而减小,
∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),
答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.
(3)P1=(-2t+96)
=-+(14+2a)t+480-96n,
∴对称轴为t=14+2a,
∵1≤t≤20,
∴14+2a≥20得a≥3时,P1随t的增大而增大,
又∵a<4,
∴3≤a<4.
点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.
5.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n>0且n为整数),与y轴交于C点.
(1)若a=1,①求二次函数关系式;②求△ABC的面积;
(2)求证:a=m-;
(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.
【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.
【解析】
试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;
②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;
(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;
(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m的值即可确定a的值.
试题解析:(1)①∵a=1,
∴A(1,0),
代入y=x2-2mx+3得1-2m+3=0,解得m=2,
∴y=x2-4x+3;
②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,
∴A(1,0)、B(3,0),
∴AB=2再根据解析式求出C点坐标为(0,3),
∴OC=3,
△ABC的面积=×2×3=3;
(2)∵y=x2-2mx+3=(x-m)2-m2+3,
∴对称轴为直线x=m,
∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B
∴点A和点B关于直线x=m对称,
∴a+n-m=m-a,
∴a=m-;
(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)
①当a为整数,因为n>0且n为整数 所以a+n是整数,
∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,
∴n=2,
∴a=m-1,
∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,
∴m2-4=0,
∴m=2,m=-2(舍去),
∴a=2-1=1,
②当a不是整数,因为n>0且n为整数 所以a+n不是整数,
∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,
∴n=3,
∴a=m-
∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,
∴m2=,
∴m=,m=-(舍去),
∴a=−,
综上所述:a=1或a=−.
考点:二次函数综合题.
6.如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,
①连接BC、CD、BD,设BD交直线AC于点E,△CDE的面积为S1,△BCE的面积为S2.求:的最大值;
②如图2,是否存在点D,使得∠DCA=2∠BAC?若存在,直接写出点D的坐标,若不存在,说明理由.
【答案】(1);(2)①当时,的最大值是;②点D的坐标是
【解析】
【分析】
(1)根据题意得到A(-4,0),C(0,2)代入y=-x2+bx+c,于是得到结论;
(2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-,0),得到PA=PC=PB=,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论.
【详解】
解:(1)根据题意得A(-4,0),C(0,2),
∵抛物线y=-x2+bx+c经过A.C两点,
∴,
∴,
抛物线解析式为: ;
(2)①令,
∴
解得: ,
∴B(1,0)
过点D作轴交AC于M,过点B作轴交AC于点N,
∴∥
∴
∴
设:
∴
∵
∴
∴
∴当时,的最大值是 ;
②∵A(-4,0),B(1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,
取AB的中点P,
∴P(-,0),
∴PA=PC=PB=,
∴∠CPO=2∠BAC,
∴tan∠CPO=tan(2∠BAC)=,
过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,
∴∠DCF=2∠BAC=∠DGC+∠CDG,
∴∠CDG=∠BAC,
∴tan∠CDG=tan∠BAC=,
即RC:DR=,
令D(a,-a2-a+2),
∴DR=-a,RC=-a2-a,
∴(-a2-a):(-a)=1:2,
∴a1=0(舍去),a2=-2,
∴xD=-2,
∴-a2-a+2=3,
∴点D的坐标是
【点睛】
本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.
7.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.
(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;
(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;
(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.
①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;
②若a>2b>3c,x2=1,求点P(,)与原点O的距离OP的取值范围.
【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;②≤OP<且OP≠1.
【解析】
【分析】
(1)由和谐三组数的定义进行验证即可;
(2)把M、N、R三点的坐标分别代入反比例函数解析式,可用t和k分别表示出y1、y2、y3,再由和谐三组数的定义可得到关于t的方程,可求得t的值;
(3)①由直线解析式可求得x1=﹣,联立直线和抛物线解析式消去y,利用一元二次方程根与系数的关系可求得x2+x3=﹣,x2x3=,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范围,令m=,利用两点间距离公式可得到OP2关于m的二次函数,利用二次函数的性质可求得OP2的取值范围,从而可求得OP的取值范围.
【详解】
(1)不能,理由如下:
∵1、2、3的倒数分别为1、、,
∴+≠1,1+≠,1+≠,
∴实数1,2,3不可以构成“和谐三组数”;
(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数(k为常数,k≠0)的图象上,
∴y1、y2、y3均不为0,且y1=,y2=,y3=,
∴=,=,=,
∵y1,y2,y3构成“和谐三组数”,
∴有以下三种情况:
当=+时,则=+,即t=t+1+t+3,解得t=﹣4;
当=+时,则=+,即t+1=t+t+3,解得t=﹣2;
当=+时,则=+,即t+3=t+t+1,解得t=2;
∴t的值为﹣4、﹣2或2;
(3)①∵a、b、c均不为0,
∴x1,x2,x3都不为0,
∵直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),
∴0=2bx1+2c,解得x1=﹣,
联立直线与抛物线解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,
∵直线与抛物线交与B(x2,y2),C(x3,y3)两点,
∴x2、x3是方程ax2+bx+c=0的两根,
∴x2+x3=﹣,x2x3=,
∴+===﹣=,
∴x1,x2,x3构成“和谐三组数”;
②∵x2=1,
∴a+b+c=0,
∴c=﹣a﹣b,
∵a>2b>3c,
∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,
∵P(,),
∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,
令m=,则﹣<m<且m≠0,且OP2=2(m+)2+,
∵2>0,
∴当﹣<m<﹣时,OP2随m的增大而减小,当m=﹣时,OP2有最大临界值,当m=﹣时,OP2有最小临界值,
当﹣<m<时,OP2随m的增大而增大,当m=﹣时,OP2有最小临界值,当m=时,OP2有最大临界值,
∴≤OP2<且OP2≠1,
∵P到原点的距离为非负数,
∴≤OP<且OP≠1.
【点睛】
本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.
8.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
【分析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
9.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.
(1)求抛物线的解析式;
(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.
(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.
【答案】(1)抛物线的解析式为y=x2﹣x+1.(2)点P的坐标为(,﹣1).(3)定点F的坐标为(2,1).
【解析】
分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;
(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;
(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.
详解:(1)∵抛物线的顶点坐标为(2,0),
设抛物线的解析式为y=a(x-2)2.
∵该抛物线经过点(4,1),
∴1=4a,解得:a=,
∴抛物线的解析式为y=(x-2)2=x2-x+1.
(2)联立直线AB与抛物线解析式成方程组,得:
,解得:,,
∴点A的坐标为(1,),点B的坐标为(4,1).
作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).
∵点B(4,1),直线l为y=-1,
∴点B′的坐标为(4,-3).
设直线AB′的解析式为y=kx+b(k≠0),
将A(1,)、B′(4,-3)代入y=kx+b,得:
,解得:,
∴直线AB′的解析式为y=-x+,
当y=-1时,有-x+=-1,
解得:x=,
∴点P的坐标为(,-1).
(3)∵点M到直线l的距离与点M到点F的距离总是相等,
∴(m-x0)2+(n-y0)2=(n+1)2,
∴m2-2x0m+x02-2y0n+y02=2n+1.
∵M(m,n)为抛物线上一动点,
∴n=m2-m+1,
∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,
整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.
∵m为任意值,
∴,
∴,
∴定点F的坐标为(2,1).
点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.
10.如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
【答案】(1)A(,0)、B(3,0).
(2)存在.S△PBC最大值为
(3)或时,△BDM为直角三角形.
【解析】
【分析】
(1)在中令y=0,即可得到A、B两点的坐标.
(2)先用待定系数法得到抛物线C1的解析式,由S△PBC = S△POC+ S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.
(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.
【详解】
解:(1)令y=0,则,
∵m<0,∴,解得:,.
∴A(,0)、B(3,0).
(2)存在.理由如下:
∵设抛物线C1的表达式为(),
把C(0,)代入可得,.
∴C1的表达式为:,即.
设P(p,),
∴ S△PBC = S△POC+ S△BOP–S△BOC=.
∵<0,∴当时,S△PBC最大值为.
(3)由C2可知: B(3,0),D(0,),M(1,),
∴BD2=,BM2=,DM2=.
∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:
当∠BMD=90°时,BM2+ DM2= BD2,即+=,
解得:,(舍去).
当∠BDM=90°时,BD2+ DM2= BM2,即+=,
解得:,(舍去) .
综上所述,或时,△BDM为直角三角形.
11.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.
(1)求抛物线的解析式;
(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;
(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.
【答案】(1)y=﹣x2+3x+4;(2)t的值为;(3)当△PDM是等腰三角形时,t=1或t=﹣1.
【解析】
【分析】
(1)求直线y=-x+4与x轴交点B,与y轴交点C,用待定系数法即求得抛物线解析式.
(2)根据点B、C坐标求得∠OBC=45°,又PE⊥x轴于点E,得到△PEB是等腰直角三角形,由t求得BE=PE=t,即可用t表示各线段,得到点M的横坐标,进而用m表示点M纵坐标,求得MP的长.根据MP∥CN可证,故有,把用t表示的MP、NC代入即得到关于t的方程,求解即得到t的值.
(3)因为不确定等腰△PDM的底和腰,故需分3种情况讨论:①若MD=MP,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP,则∠DMP=∠MPD=45°,进而得AE=ME,把含t的式子代入并解方程即可;③若MP=DP,则∠PMD=∠PDM,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF进而得CF=CD.用t表示M的坐标,求直线AM解析式,求得AM与y轴交点F的坐标,即能用t表示CF的长.把直线AM与直线BC解析式联立方程组,解得x的值即为点D横坐标.过D作y轴垂线段DG,得等腰直角△CDG,用DG即点D横坐标,进而可用t表示CD的长.把含t的式子代入CF=CD,解方程即得到t的值.
【详解】
(1)直线y=﹣x+4中,当x=0时,y=4
∴C(0,4)
当y=﹣x+4=0时,解得:x=4
∴B(4,0)
∵抛物线y=﹣x2+bx+c经过B,C两点
∴ 解得:
∴抛物线解析式为y=﹣x2+3x+4
(2)∵B(4,0),C(0,4),∠BOC=90°
∴OB=OC
∴∠OBC=∠OCB=45°
∵ME⊥x轴于点E,PB=t
∴∠BEP=90°
∴Rt△BEP中,
∴,
∴
∵点M在抛物线上
∴,
∴ ,
∵PN⊥y轴于点N
∴∠PNO=∠NOE=∠PEO=90°
∴四边形ONPE是矩形
∴ON=PE=t
∴NC=OC﹣ON=4﹣t
∵MP∥CN
∴△MPQ∽△NCQ
∴
∴
解得:(点P不与点C重合,故舍去)
∴t的值为
(3)∵∠PEB=90°,BE=PE
∴∠BPE=∠PBE=45°
∴∠MPD=∠BPE=45°
①若MD=MP,则∠MDP=∠MPD=45°
∴∠DMP=90°,即DM∥x轴,与题意矛盾
②若DM=DP,则∠DMP=∠MPD=45°
∵∠AEM=90°
∴AE=ME
∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4
∴A(﹣1,0)
∵由(2)得,xM=4﹣t,ME=yM=﹣t2+5t
∴AE=4﹣t﹣(﹣1)=5﹣t
∴5﹣t=﹣t2+5t
解得:t1=1,t2=5(0<t<4,舍去)
③若MP=DP,则∠PMD=∠PDM
如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G
∴∠CFD=∠PMD=∠PDM=∠CDF
∴CF=CD
∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m
∴ 解得: ,
∴直线AM:
∴F(0,t)
∴CF=OC﹣OF=4﹣t
∵tx+t=﹣x+4,解得:,
∴,
∵∠CGD=90°,∠DCG=45°
∴,
∴
解得:
综上所述,当△PDM是等腰三角形时,t=1或.
【点睛】
本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.
12.在平面直角坐标系xOy中(如图),已知抛物线y=x2-2x,其顶点为A.
(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;
(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”
①试求抛物线y=x2-2x的“不动点”的坐标;
②平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.
【答案】(l)抛物线y=x2-2x的开口向上,顶点A的坐标是(1,-1),抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的;(2)①(0,0)、(3,3); ②新抛物线的表达式是y=(x+1)2-1.
【解析】
【分析】
(1),故该抛物线开口向上,顶点的坐标为;
(2)①设抛物线“不动点”坐标为,则,即可求解;②新抛物线顶点为“不动点”,则设点,则新抛物线的对称轴为:,与轴的交点,四边形是梯形,则直线在轴左侧,而点,点,则,即可求解.
【详解】
(l),
抛物线y=x2-2x的开口向上,顶点A的坐标是(1,-1),
抛物线的变化情况是:抛物线在对称轴左侧的部分是下降的,右侧的部分是上升的.
(2)①设抛物线y=x2-2x的“不动点”坐标为(t,t).
则t=t2-2t,解得t1=0,t2=3.
所以,抛物线y=x2-2x的“不动点”的坐标是(0,0)、(3,3).
②∵新抛物线的顶点B是其“不动点”,∴设点B的坐标为(m,m)
∴新抛物线的对称轴为直线x=m,与x轴的交点为C(m,0)
∵四边形OABC是梯形,
∴直线x=m在y轴左侧.
∵BC与OA不平行
∴OC∥AB.
又∵点A的坐标为(1,一1),点B的坐标为(m,m),
m=-1.
∴新抛物线是由抛物线y=x2-2x向左平移2个单位得到的,
∴新抛物线的表达式是y=(x+1)2-1.
【点睛】
本题为二次函数综合运用题,涉及到二次函数基本知识、梯形基本性质,此类新定义题目,通常按照题设顺序,逐次求解即可.
13.如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.
(1)求抛物线的解析式;
(2)当何值时,的面积最大?并求最大值的立方根;
(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.
【答案】(1)抛物线解析式为y=﹣x2+2x+3;(2)当t=时,△PEF的面积最大,其最大值为×,
最大值的立方根为=;(3)存在满足条件的点P,t的值为1或
【解析】
试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;
(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;
(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.
试题解析: (1)由题意可得,解得,
∴抛物线解析式为y=﹣x2+2x+3;
(2)∵A(0,3),D(2,3),
∴BC=AD=2,
∵B(﹣1,0),
∴C(1,0),
∴线段AC的中点为(,),
∵直线l将平行四边形ABCD分割为面积相等两部分,
∴直线l过平行四边形的对称中心,
∵A、D关于对称轴对称,
∴抛物线对称轴为x=1,
∴E(3,0),
设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,
∴直线l的解析式为y=﹣x+,
联立直线l和抛物线解析式可得,解得或,
∴F(﹣,),
如图1,作PH⊥x轴,交l于点M,作FN⊥PH,
∵P点横坐标为t,
∴P(t,﹣t2+2t+3)
展开阅读全文