资源描述
完整版最新人教版七年级数学下册期中试卷(含答案)
一、选择题
1.25的平方根是()
A.±5 B.5 C.± D.﹣5
2.下列哪些图形是通过平移可以得到的( )
A. B.
C. D.
3.下列各点在第二象限的是( )
A. B. C. D.
4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )
A.①② B.①④ C.①②③ D.①②④
5.一副直角三角尺叠放如图1所示,现将45°的三角尺固定不动,将含30°的三角尺绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则()其它所有可能符合条件的度数为( )
A.60°和135° B.60°和105° C.105°和45° D.以上都有可能
6.下列各式正确的是( )
A. B. C. D.
7.如图,和相交于点O,则下列结论正确的是( )
A. B. C. D.
8.在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2021的坐标为( )
A.(﹣3,1) B.(0,﹣2) C.(3,1) D.(0,4)
二、填空题
9.=________.
10.点(3,0)关于y轴对称的点的坐标是_______
11.如图,已知//,,∠和∠的角平分线交于点F,∠=__________°.
12.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=72°,则∠AED′=__.
13.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____.
14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.
15.已知点、,点P在轴上,且的面积为5,则点P的坐标为__________.
16.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4…表示,则顶点A2021的坐标是________.
三、解答题
17.计算:
(1)
(2)
18.求下列各式中的x值:
(1)169x2=144;
(2)(x-2)2-36=0.
19.如图所示,于点,于点,若,则吗?下面是推理过程,请你填空或填写理由.
证明:∵于点,于点(已知),
∴(____________),
∴(________________________),
∴(________________________),
∵(已知)
∴(____________)
∵,
∴______(______________________________).
∴____________(等量代换)
20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,
(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;
(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.
21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是________,小数部分是________.
(2)如果的小数部分为,的整数部分为,求的值.
(3)已知:,其中是整数,且,求的相反数.
22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长;
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.
23.(1)(问题)如图1,若,,.求的度数;
(2)(问题迁移)如图2,,点在的上方,问,,之间有何数量关系?请说明理由;
(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据平方根的定义,进行计算求解即可.
【详解】
解:∵(±5)2=25
∴25的平方根±5.
故选A.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.
2.B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
解析:B
【分析】
根据平移、旋转、轴对称的定义逐项判断即可.
【详解】
A、通过旋转得到,故本选项错误
B、通过平移得到,故本选项正确
C、通过轴对称得到,故本选项错误
D、通过旋转得到,故本选项错误
故选:B.
【点睛】
本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A.在第一象限,故本选项不合题意;
B.在第四象限,故本选项不合题意;
C.在第二象限,故本选项符合题意.
D.在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4.A
【分析】
根据两直线的位置关系即可判断.
【详解】
①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.
故①②正确,故选A.
【点睛】
此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.
5.D
【分析】
根据题意画出图形,再由平行线的性质定理即可得出结论.
【详解】
解:如图
当∥时,;
当∥时,;
当∥ 时,∵,
∴;
当∥时,∵ ,
∴.
故选:.
【点睛】
本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.
6.B
【分析】
根据算术平方根的定义,立方根的定义以及平方根的定义逐一判断即可.
【详解】
解:A.,故本选项不合题意;
B.,正确;
C.,故本选项不合题意;
D.,故本选项不合题意.
故选:B.
【点睛】
本题考查了平方根,立方根以及算术平方根的定义,熟记相关定义是解题的关键.
7.A
【分析】
根据对顶角的性质和平行线的性质判断即可.
【详解】
解:A、∵和是对顶角,
∴,选项正确,符合题意;
B、∵与OB相交于点A,
∴与OB不平行,
∴,选项错误,不符合题意;
C、∵AO与BC相交于点B,
∴AO与BC不平行,
∴,选项错误,不符合题意;
D、∵OD与BC相交于点C,
∴OD与BC不平行,
∴,选项错误,不符合题意.
故选:A.
【点睛】
此题考查了对顶角的性质,平行线的性质,解题的关键是熟练掌握对顶角的性质和平行线的性质.对顶角相等.
8.C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴
解析:C
【分析】
根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.
【详解】
解:∵A1的坐标为(3,1),
∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),
…,
依此类推,每4个点为一个循环组依次循环,
∵2021÷4=505•••1,
∴点A2021的坐标与A1的坐标相同,为(3,1).
故选:C.
【点睛】
本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.
二、填空题
9.6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
解析:6
【分析】
根据算术平方根、有理数的乘方运算即可得.
【详解】
故答案为:6.
【点睛】
本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
11.135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°
解析:135;
【分析】
连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.
【详解】
解:连接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分线交于点F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案为135.
【点睛】
本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.
12.36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=
解析:36°
【分析】
根据平行线的性质可知∠DEF=∠EFB=72°,由折叠的性质求出∠D′EF72°,然后可求∠AED′的值.
【详解】
解:∵四边形ABCD为长方形,
∴AD//BC,
∴∠DEF=∠EFB=72°,
又由折叠的性质可得∠D′EF=∠DEF=72°,
∴∠AED′=180°﹣72°﹣72°=36°,
故答案为:36°.
【点睛】
本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答本题的关键.
13.30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º
解析:30°
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º,
∴∠DNM=∠BMN=75º,
∵将矩形ABCD沿MN折叠,使点B与点D重合,
∴∠BMN=∠NMD=75º,
∴∠BMD=150º,
∴∠AMD=30º,
故答案为:30º.
【点睛】
本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.
14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的规律为:分子为,分母为
归纳类推得:第n个等式为(n为正整数)
当时,这个等式为,即
故答案为:.
【点睛】
本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.
15.(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4
解析:(-4,0)或(6,0)
【分析】
设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;
【详解】
如图,设P(m,0),
由题意: •|1-m|•2=5,
∴m=-4或6,
∴P(-4,0)或(6,0),
故答案为:(-4,0)或(6,0)
【点睛】
此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.
16.(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A
解析:(-506,-506)
【分析】
根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论.
【详解】
解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3),…,
∴A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),
∵2021=505×4+1,
∴A2021(-506,-506),
故答案为:(-506,-506).
【点睛】
本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.
三、解答题
17.(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:
解析:(1);(2)
【分析】
(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;
(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.
【详解】
解:(1)原式==;
(2)原式=.
【点睛】
本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.
18.(1)x=±;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【详解】
解:(1)169x2=144,
移项得:x2=,
解得:x=±.
解析:(1)x=±;(2)x=8或x=-4.
【分析】
(1)移项后,根据平方根定义求解;
(2)移项后,根据平方根定义求解.
【详解】
解:(1)169x2=144,
移项得:x2=,
解得:x=±.
(2)(x-2)2-36=0,
移项得:(x-2)2=36,
开方得:x-2=6或x-2=-6
解得:x=8或x=-4.
故答案为(1)x=±;(2)x=8或x=-4.
【点睛】
本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.
19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【分析】
根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥E
解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【分析】
根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.
【详解】
证明:∵AD⊥BC于点D,EG⊥BC于点G(已知),
∴∠ADC=∠EGC=90°(垂直的定义),
∴AD∥EG(同位角相等,两直线平行),
∴∠1=∠2(两直线平行,内错角相等),
∵∠E=∠1(已知),
∴∠E=∠2(等量代换),
∵AD∥EG,
∴∠E=∠3(两直线平行,同位角相等),
∴∠2=∠3(等量代换),
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E;两直线平行,同位角相等;∠2;∠3.
【点睛】
本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键.
20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(
解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)
【分析】
(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.
(2)分别作出A′,B′,C′即可解决问题.
【详解】
解:(1)平面直角坐标系如图所示:B(0,1).
(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).
【点睛】
本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
21.(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的
解析:(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的值,再代入求解即可.
【详解】
(1)∵4<<5,
∴的整数部分是4,小数部分是 −4,
故答案为:4, −4;
(2)∵2<<3,
∴a=−2,
∵3<<4,
∴b=3,
∴a+b−=−2+3−=1;
(3)∵1<3<4,
∴1<<2,
∴11<10+<12,
∵10+=x+y,其中x是整数,且0<y<1,
∴x=11,y=10+−11=−1,
∴x−y=11−(−1)=12−,
∴x−y的相反数是−12+;
【点睛】
此题考查估算无理数的大小,解题关键在于掌握估算方法.
22.(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
解析:(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
(2)因为正方体的棱长为4,所以AB=.
【点睛】
本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.
23.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α
【分析】
(1)根据平行线的性质与判定可求解;
(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF
解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α
【分析】
(1)根据平行线的性质与判定可求解;
(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;
(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.
【详解】
解:(1)如图1,过点P作PM∥AB,
∴∠1=∠AEP.
又∠AEP=40°,
∴∠1=40°.
∵AB∥CD,
∴PM∥CD,
∴∠2+∠PFD=180°.
∵∠PFD=130°,
∴∠2=180°-130°=50°.
∴∠1+∠2=40°+50°=90°.
即∠EPF=90°.
(2)∠PFC=∠PEA+∠P.
理由:过P点作PN∥AB,则PN∥CD,
∴∠PEA=∠NPE,
∵∠FPN=∠NPE+∠FPE,
∴∠FPN=∠PEA+∠FPE,
∵PN∥CD,
∴∠FPN=∠PFC,
∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;
(3)令AB与PF交点为O,连接EF,如图3.
在△GFE中,∠G=180°-(∠GFE+∠GEF),
∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,
∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,
∵由(2)知∠PFC=∠PEA+∠P,
∴∠PEA=∠PFC-α,
∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,
∴∠GEF+∠GFE=(∠PFC−α)+∠PFC+180°−∠PFC=180°−α,
∴∠G=180°−(∠GEF+∠GFE)=180°−180°+α=α.
【点睛】
本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.
展开阅读全文