资源描述
人教版七年级数学下册期末压轴难题复习知识点大全精选模拟
一、选择题
1.如图所示,下列四个选项中不正确的是( )
A.与是同旁内角 B.与是内错角
C.与是对顶角 D.与是邻补角
2.如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为( )
A.3 B.4 C.5 D.6
3.在平面直角坐标系中,点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( )
A.1个 B.2个 C.3个 D.4个
5.将一副三角板按如图放置,如果,则有是( )
A.15° B.30° C.45° D.60°
6.若一个正数的两个平方根分别是2m+6和m﹣18,则5m+7的立方根是( )
A.9 B.3 C.±2 D.﹣9
7.如图,在中,∠AEC=50°,平分,则的度数为( )
A.25° B.30° C.35° D.40°
8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,-1) C.(2021,1) D.(2022,0)
二、填空题
9.如果一个正方形的面积为3,则这个正方形的边长是 _____________.
10.已知点P(3,﹣1)关于x轴的对称点Q的坐标是(a+b,1﹣b),则a=___,b=___.
11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度.
12.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有 _______个.
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=.
例如:(-3)☆2= = 2.
从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
15.若点P(2-m,m+1)在x轴上,则P点坐标为_____.
16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________.
三、解答题
17.计算:
(1)
(2)
(3)
(4)
18.求下列各式中x的值
(1)81x2 =16
(2)
19.完成下面的证明:
已知:如图,,,.
求证:.
证明:(已知),
∵∠______(____________________).
∴,(已知),
∵__________.
即∠______
∴(______________________________).
20.如图,三角形在平面直角坐标系中.
(1)请写出三角形各点的坐标;
(2)求出三角形的面积;
(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.
21.已知某正数的两个不同的平方根是和;的立方根为;是的整数部分.
求的平方根.
二十二、解答题
22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.
二十三、解答题
23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
24.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数.
她是这样做的:
过点作
则有
因为
所以①
所以
所以
即_ ;
1.小颖求得的度数为__ ;
2.上述思路中的①的理由是__ ;
3.请你参考她的思考问题的方法,解决问题:
已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点.
(1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示).
(2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示).
25.如图,在中,是高,是角平分线,,.
()求、和的度数.
()若图形发生了变化,已知的两个角度数改为:当,,则__________.
当,时,则__________.
当,时,则__________.
当,时,则__________.
()若和的度数改为用字母和来表示,你能找到与和之间的关系吗?请直接写出你发现的结论.
26.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;
(2)在图2中,若∠B=96°,∠C=100°,求∠P的度数;
(3)在图2中,若设∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间存在着怎样的数量关系(用α、β表示∠P),并说明理由;
(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.
【详解】
A. 与是同旁内角,故该选项正确,不符合题意;
B. 与不是内错角,故该选项不正确,符合题意;
C. 与是对顶角,故该选项正确,不符合题意;
D. 与是邻补角,故该选项正确,不符合题意;
故选B.
【点睛】
本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.
2.A
【分析】
根据平移的性质证明BE=CF即可解决问题.
【详解】
解:由平移的性质可知,BC=EF,
∴BE=CF,
∵BF=8,EC=2,
∴BE+CF=8﹣2=6,
∴CF=BE=3,
故选:
解析:A
【分析】
根据平移的性质证明BE=CF即可解决问题.
【详解】
解:由平移的性质可知,BC=EF,
∴BE=CF,
∵BF=8,EC=2,
∴BE+CF=8﹣2=6,
∴CF=BE=3,
故选:A.
【点睛】
本题考查平移的性质,掌握平移的性质是解题的关键.
3.B
【分析】
根据各象限内点的坐标特征解答即可.
【详解】
解:点A(-3,2)在第二象限,
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据几何初步知识对命题逐个判断即可.
【详解】
解:①对顶角相等,为真命题;
②内错角相等,只有两直线平行时,内错角才相等,此为假命题;
③平行于同一条直线的两条直线互相平行,为真命题;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;
⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;
①③命题正确.
故选:B.
【点睛】
本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.
5.C
【分析】
根据一副三角板的特征先得到∠E=60°,∠C=45°,∠1+∠2=90°,再根据已知求出∠1=60°,从而可证得AC∥DE,再根据平行线的性质即可求出∠4的度数.
【详解】
解:根据题意可知:∠E=60°,∠C=45°,∠1+∠2=90°,
∵,
∴∠1=60°,
∴∠1=∠E,
∴AC∥DE,
∴∠4=∠C=45°.
故选:C.
【点睛】
本题考查的是平行线的性质和余角、补角的概念,掌握平行线的性质定理和判定定理是解题的关键.
6.B
【分析】
根据立方根与平方根的定义即可求出答案.
【详解】
解:由题意可知:2m+6+m﹣18=0,
∴m=4,
∴5m+7=27,
∴27的立方根是3,
故选:B.
【点睛】
考核知识点:平方根、立方根.理解平方根、立方根的定义和性质是关键.
7.A
【分析】
根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠BCE=∠BCD =∠ECD=25°,由此即可求解.
【详解】
解:∵AB∥CD,
∴∠ABC=∠BCD,∠ECD=∠AEC=50°
∵CB平分∠DCE,
∴∠BCE=∠BCD =∠ECD=25°
∠ABC=∠BCD=25°
故选A.
【点睛】
本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
∴当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
二、填空题
9.【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛
解析:
【分析】
设这个正方形的边长为x(x>0),由题意得x2=3,根据算术平方根的定义解决此题.
【详解】
解:设这个正方形的边长为x(x>0).
由题意得:x2=3.
∴x=.
故答案为:.
【点睛】
本题主要考查正方形的面积以及算术平方根,熟练掌握算术平方根的定义是解决本题的关键.
10.0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.
【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解析:0
【分析】
根据题意结合关于x轴对称点的性质得出关于a,b的等式,进而求出答案.
【详解】
解:∵点P(3,-1)关于x轴的对称点Q的坐标是(a+b,1-b),
∴a+b=3,1-b=1,
解得:a=3,b=0,
故答案为:3,0.
【点睛】
此题主要考查了关于x轴对称点的性质,正确得出a,b的值是解题关键.
11.【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠
解析:【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°,
∴∠DAC+∠ACF=360°-∠1-∠2=220°,
∵AE和CE分别是和的角平分线,
∴,
∴,
∴.
故答案为:70.
【点睛】
本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.
12.4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1
解析:4
【分析】
根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个
【详解】
∵射线DF⊥直线c
∴∠1+∠2=90°,∠1+∠3=90°
即与∠1互余的角有∠2,∠3
又∵a∥b
∴∠3=∠5,∠2=∠4
∴∠1互余的角有∠4,∠5
∴与∠1互余的角有4个
故答案为:4
【点睛】
本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
14.8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:8
【解析】
解:当a>b时,a☆b= =a,a最大为8;
当a<b时,a☆b==b,b最大为8,故答案为:8.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
15.(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.
【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标
解析:(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.
【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标为(3,0),
故答案为:(3,0)
【点睛】
本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.
16.【分析】
先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题.
【详解】
解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),
四边形ABCD的周长为2+4+2+4=
解析:
【分析】
先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题.
【详解】
解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),
四边形ABCD的周长为2+4+2+4=12,
细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.
三、解答题
17.(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算
解析:(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算;
(4)利用绝对值的性质化简,再进一步合并同类二次根式.
【详解】
解:(1)
=3+2+1
=6;
(2)
=2-3-3
=-4;
(3)
= ;
(4)
=
=.
故答案为(1)6;(2)-4;(3);(4).
【点睛】
本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.
18.(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
解析:(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
【点睛】
本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.
19.BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(
解析:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(垂直的定义).
∵,(已知),
∴180°
即∠BAD
∴(同旁内角互补,两直线平行)
故答案为:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了垂直定义和平行线的判定,证明∠BAD是解题关键.
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标
解析:(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
,,;
(2)三角形的面积
;
(3)三角形向上平移2个单位,再向左平移1个单位得到三角形
可得,,,连接,三角形如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.
21.【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
解析:
【分析】
由平方根的含义求解 由立方根的含义求解 由整数部分的含义求解 从而可得答案.
【详解】
解:某正数的两个平方根分别是和,
,
又的立方根为,
,
,
又是的整数部分,
;
当,,时,
,
的平方根是.
【点睛】
本题考查的是平方根,立方根的含义,无理数的估算,整数部分的含义,掌握以上知识是解题的关键.
二十二、解答题
22.正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
解析:正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
∴答:正方形纸板的边长是18厘米.
【点评】
本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.
二十三、解答题
23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条
解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
24.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案.
【详解】
1、过点作
则有
因为
所以①
所以
所以
即;
故答案为:;
2、过点作
则有
因为
所以EF∥CD(平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE平分平分
∴,
过点E作EF∥AB,由1可得∠BED=,
∴∠BED=,
故答案为:;
(2)∵BE平分平分
∴,
过点E作EF∥AB,则∠ABE=∠BEF=,
∵
∴EF∥CD,
∴,
∴,
∴.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
25.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.
【分析】
(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;
(2)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,则前三问利用即可得出答案,第4问利用即可得出答案;
(3)按照(2)的方法,将相应的数换成字母即可得出答案.
【详解】
(1)∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
,
.
(2)当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
;
当,时,
∵,,
∴.
∵平分,
∴.
∵是高,
,
,
.
(3)当 时,即时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
当 时,即时,
∵,,
∴ .
∵平分,
∴.
∵是高,
,
,
;
综上所述,当时,;当时,.
【点睛】
本题主要考查三角形内角和定理和三角形的角平分线,高,掌握三角形内角和定理和直角三角形两锐角互余是解题的关键.
26.(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠
解析:(1)3;(2)98°;(3)∠P=(β+2α),理由见解析;(4)360°.
【分析】
(1)以M为交点的“8字形”有1个,以O为交点的“8字形”有2个;
(2)根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入计算即可;
(3)与(2)的证明方法一样得到∠P=(2∠C+∠B).
(4)根据三角形内角与外角的关系可得∠B+∠A=∠1,∠C+∠D=∠2,再根据四边形内角和为360°可得答案.
【详解】
解:(1)在图2中有3个以线段AC为边的“8字形”,
故答案为3;
(2)∵∠CAB和∠BDC的平分线AP和DP相交于点P,
∴∠CAP=∠BAP,∠BDP=∠CDP,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠P﹣∠B,
即∠P=(∠C+∠B),
∵∠C=100°,∠B=96°
∴∠P=(100°+96°)=98°;
(3)∠P=(β+2α);
理由:∵∠CAP=∠CAB,∠CDP=∠CDB,
∴∠BAP=∠BAC,∠BDP=∠BDC,
∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,
∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,
∴2(∠C﹣∠P)=∠P﹣∠B,
∴∠P=(∠B+2∠C),
∵∠C=α,∠B=β,
∴∠P=(β+2α);
(4)∵∠B+∠A=∠1,∠C+∠D=∠2,
∴∠A+∠B+∠C+∠D=∠1+∠2,
∵∠1+∠2+∠F+∠E=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
故答案为360°.
展开阅读全文