收藏 分销(赏)

上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc

上传人:快乐****生活 文档编号:4882238 上传时间:2024-10-17 格式:DOC 页数:33 大小:1.40MB
下载 相关 举报
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc_第1页
第1页 / 共33页
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc_第2页
第2页 / 共33页
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc_第3页
第3页 / 共33页
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc_第4页
第4页 / 共33页
上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案).doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、上海民办张江集团学校七年级下册数学期末试卷试卷(word版含答案)一、解答题1已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明2(1)如图,若B+D=E,则直线AB与CD有什么位置关系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 3如图,直线,一副直角三角板中,(1)若如图1摆放,当平

2、分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间4如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连

3、接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数5已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若

4、变化,请说明理由二、解答题6感知如图,求的度数小乐想到了以下方法,请帮忙完成推理过程解:(1)如图,过点P作(_),_(平行于同一条直线的两直线平行),_(两直线平行,同旁内角互补),即探究如图,求的度数;应用(1)如图,在探究的条件下,的平分线和的平分线交于点G,则的度数是_(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E设,请直接写出的度数(用含的式子表示)7为了安全起见在某段铁路两旁安置了两座可旋转探照灯如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视若灯转动的速度是

5、每秒2度,灯转动的速度是每秒1度假定主道路是平行的,即,且(1)填空:_;(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯射线到达之前若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由8已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,

6、当线段与的一条边平行时,请直接写出的度数9已知,如图,BAD=50,点C为射线AD上一点(不与A重合),连接BC(1)问题提出如图,ABCE,BCD=73 ,则:B= (2)类比探究在图中,探究BAD、B和BCD之间有怎样的数量关系?并用平行线的性质说明理由(3)拓展延伸如图,在射线BC上取一点O,过O点作直线MN使MNAD,BE平分ABC交AD于E点,OF平分BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值10已知直线,点分别为, 上的点(1)如图1,若, ,求与的度数;(2)如图2,若, ,则_;(3)若

7、把(2)中“, ”改为“, ”,则_(用含的式子表示)三、解答题11阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120,40,20,这个三角形就是一个“梦想三角形”反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍(1)如果一个“梦想三角形”有一个角为108,那么这个“梦想三角形”的最小内角的度数为_(2)如图1,已知MON60,在射线OM上取一点A,过点A作ABOM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O

8、、B重合),若ACB=80判定AOB、AOC是否是“梦想三角形”,为什么?(3)如图2,点D在ABC的边上,连接DC,作ADC的平分线交AC于点E,在DC上取一点F,使得EFC+BDC180,DEFB若BCD是“梦想三角形”,求B的度数12小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的

9、数量关系.13问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系14如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法

10、:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互余三角形”,请直接写出的度数15已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、解答题1(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据

11、平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键2(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出解析:(1)A

12、B/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,

13、B+FED=BED B+D=E(已知),FED=D CD/EF(内错角相等,两直线平行)AB/CD (2)过点E作EMAB,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,E1+E2+En=B+F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EF

14、AB,GHAB,EFGH,EMN+MNG=180,1+2+MNG =1802,依次类推:1+2+n-1+n=(n-1)180故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形3(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;

15、(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,M

16、FDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(18010

17、5)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075

18、,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键4(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补

19、角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC

20、=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系5(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2

21、)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二、解答题6感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;解析:感知见解析;探究70;应用(1)35;(2)或

22、【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;探究过点P作PMAB,根据ABCD,PMCD,进而根据平行线的性质即可求EPF的度数;应用(1)如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数;(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解【详解】解:感知如图,过点P作PMAB,1=AEP=40(两直线平行,内错角相等)ABCD,PMCD(平行于同一条直线的两直线平行),2+PFD=180(两直线平行,同旁内角互补),PFD=130(已知),2=180-130=50,1+2=

23、40+50=90,即EPF=90;探究如图,过点P作PMAB,MPE=AEP=50,ABCD,PMCD,PFC=MPF=120,EPF=MPF-MPE=120-50=70;应用(1)如图所示,EG是PEA的平分线,FG是PFC的平分线,AEG=AEP=25,GFC=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35故答案为:35(2)当点A在点B左侧时,如图,故点E作EFAB,则EFCD,ABE=BEF,CDE=DEF,平分平

24、分,ABE=BEF=,CDE=DEF=,BED=BEF+DEF=;当点A在点B右侧时,如图,故点E作EFAB,则EFCD,DEF=CDE,ABG=BEF,平分平分,DEF=CDE=,ABG=BEF=,BED=DEF-BEF=;综上:BED的度数为或【点睛】本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质7(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,解析:(1)72;(2)30秒或110秒;(3)不变,BAC=2BCD

25、【分析】(1)根据BAM+BAN=180,BAM:BAN=3:2,即可得到BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0t90时,根据2t=1(30+t),可得 t=30;当90t150时,根据1(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据BAC=2t-108,BCD=126-BCA=t-54,即可得出BAC:BCD=2:1,据此可得BAC和BCD关系不会变化【详解】解:(1)BAM+BAN=180,BAM:BAN=3:2,BAN=180=72,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,当0t90

26、时,如图1,PQMN,PBD=BDA,ACBD,CAM=BDA,CAM=PBD2t=1(30+t),解得 t=30;当90t150时,如图2,PQMN,PBD+BDA=180,ACBD,CAN=BDAPBD+CAN=1801(30+t)+(2t-180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)BAC和BCD关系不会变化理由:设灯A射线转动时间为t秒,CAN=180-2t,BAC=72-(180-2t)=2t-108,又ABC=108-t,BCA=180-ABC-BAC=180-t,而ACD=126,BCD=126-BCA=126-(180-t)

27、=t-54,BAC:BCD=2:1,即BAC=2BCD,BAC和BCD关系不会变化【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补8(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当

28、BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=

29、45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点9(1);(2),见解析;(3)不变, 【分析】(1)根据平行线的性质求出,再求

30、出的度数,利用内错角相等可求出角的度数;(2)过点作,类似(1)利用平行线的性质,得出三个角的关系;(3)运用解析:(1);(2),见解析;(3)不变, 【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论【详解】(1)因为,所以,因为BCD=73 ,所以,故答案为: (2),如图,过点作,则,因为,所以,(3)不变,设,因为平分,所以由(2)的结论可知,且,则:因为,所以,因为平分,所以因为,所以,所以【点睛】本题考查了平行线的性

31、质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系10(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120,120;(2)160;(3)【分析】(1)过点作,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,根据 即可得到结果;(2)同理(1)的求法,根据, 求解即可;(3)同理(1)的求法,根据, 求解即可;【详解】解:(1)如图示,分别过点作, ,又,(2)如图示,分别过

32、点作, ,又,故答案为:160;(3)同理(1)的求法, ,又, ,故答案为:【点睛】本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键三、解答题11(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,解析:(1)36或18;(2)AOB、AOC都是“梦想三角形”,证明详见解析;(3)B36或B【分析】(1)根据三角形内角和等于180,如果一个“梦想三角形”有一个角为108,可得另两个角的和为72,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180

33、108108336,72(13)18,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出ABO、OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到EFCADC,根据平行线的性质得到DEFADE,推出DEBC,得到CDEBCD,根据角平分线的定义得到ADECDE,求得BBCD,根据“梦想三角形”的定义求解即可【详解】解:当108的角是另一个内角的3倍时,最小角为180108108336,当18010872的角是另一个内角的3倍时,最小角为72(13)18,因此,这个“梦想三角形”的最小内角的度数为36或18故答案为:18或36(2)AOB、AOC都是“梦想

34、三角形” 证明:ABOM,OAB90,ABO90MON30,OAB3ABO,AOB为“梦想三角形”, MON60,ACB80,ACBOACMON,OAC806020,AOB3OAC,AOC是“梦想三角形” (3)解:EFCBDC180,ADCBDC180,EFCADC,ADEF, DEFADE,DEFB,BADE,DEBC, CDEBCD,AE平分ADC,ADECDE,BBCD,BCD是“梦想三角形”,BDC3B,或B3BDC, BDCBCDB180,B36或B【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键12习题回顾证明见解析;变式思考 相

35、等,证明见解析;探究延伸 M+CFE=90,证明见解析【分析】习题回顾根据同角的余角相等可证明B=ACD,再根据三角形的外角的性质即可解析:习题回顾证明见解析;变式思考 相等,证明见解析;探究延伸 M+CFE=90,证明见解析【分析】习题回顾根据同角的余角相等可证明B=ACD,再根据三角形的外角的性质即可证明;变式思考根据角平分线的定义和对顶角相等可得CAE=DAF、再根据直角三角形的性质和等角的余角相等即可得出=;探究延伸根据角平分线的定义可得EAN=90,根据直角三角形两锐角互余可得M+CEF=90,再根据三角形外角的性质可得CEF=CFE,由此可证M+CFE=90【详解】习题回顾证明:A

36、CB=90,CD是高,B+CAB=90,ACD+CAB=90,B=ACD,AE是角平分线,CAF=DAF,CFE=CAF+ACD,CEF=DAF+B,CEF=CFE;变式思考相等,理由如下:证明:AF为BAG的角平分线,GAF=DAF,CAE=GAF,CAE=DAF,CD为AB边上的高,ACB=90,ADC=90,ADF=ACE=90,DAF+F=90,E+CAE=90,CEF=CFE;探究延伸M+CFE=90,证明:C、A、G三点共线AE、AN为角平分线,EAN=90,又GAN=CAM,M+CEF=90,CEF=EAB+B,CFE=EAC+ACD,ACD=B,CEF=CFE,M+CFE=90

37、【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键13(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;

38、(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决14(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服