资源描述
2020-2021中考数学 平行四边形 培优易错试卷练习(含答案)附答案解析
一、平行四边形
1.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
在△ABP和△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∠C=∠BQH=90°,BH=BH,
在△BCH和△BQH中,
,
∴△BCH≌△BQH(SAS),
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
在△EFM和△BPA中,
,
∴△EFM≌△BPA(AAS).
∴EM=AP.
设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+,
∴CF=BE-EM=2+-x,
∴BE+CF=-x+4=(x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.
2.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
,
∴△DOE≌△BOF,
∴EO=OF,∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,OB=OD,
∴EB=ED,
∴四边形EBFD是菱形.
②∵BE平分∠ABD,
∴∠ABE=∠EBD,
∵EB=ED,
∴∠EBD=∠EDB,
∴∠ABD=2∠ADB,
∵∠ABD+∠ADB=90°,
∴∠ADB=30°,∠ABD=60°,
∴∠ABE=∠EBO=∠OBF=30°,
∴∠EBF=60°.
(2)结论:IH=FH.
理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.
∵四边形EBFD是菱形,∠B=60°,
∴EB=BF=ED,DE∥BF,
∴∠JDH=∠FGH,
在△DHJ和△GHF中,
,
∴△DHJ≌△GHF,
∴DJ=FG,JH=HF,
∴EJ=BG=EM=BI,
∴BE=IM=BF,
∵∠MEJ=∠B=60°,
∴△MEJ是等边三角形,
∴MJ=EM=NI,∠M=∠B=60°
在△BIF和△MJI中,
,
∴△BIF≌△MJI,
∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,
∴IH⊥JF,
∵∠BFI+∠BIF=120°,
∴∠MIJ+∠BIF=120°,
∴∠JIF=60°,
∴△JIF是等边三角形,
在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,
∴∠FIH=30°,
∴IH=FH.
(3)结论:EG2=AG2+CE2.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°
∴EC2+CM2=EM2,
∵EG=EM,AG=CM,
∴GE2=AG2+CE2.
【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
3.(1)(问题发现)
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)(拓展研究)
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(问题发现)
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
【答案】(1)BE=AF;(2)无变化;(3)AF的长为﹣1或+1.
【解析】
试题分析:(1)先利用等腰直角三角形的性质得出AD= ,再得出BE=AB=2,即可得出结论;
(2)先利用三角函数得出,同理得出,夹角相等即可得出△ACF∽△BCE,进而得出结论;
(3)分两种情况计算,当点E在线段BF上时,如图2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=﹣,借助(2)得出的结论,当点E在线段BF的延长线上,同前一种情况一样即可得出结论.
试题解析:(1)在Rt△ABC中,AB=AC=2,
根据勾股定理得,BC=AB=2,
点D为BC的中点,∴AD=BC=,
∵四边形CDEF是正方形,∴AF=EF=AD=,
∵BE=AB=2,∴BE=AF,
故答案为BE=AF;
(2)无变化;
如图2,在Rt△ABC中,AB=AC=2,
∴∠ABC=∠ACB=45°,∴sin∠ABC=,
在正方形CDEF中,∠FEC=∠FED=45°,
在Rt△CEF中,sin∠FEC=,
∴,
∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,
∴△ACF∽△BCE,∴ =,∴BE=AF,
∴线段BE与AF的数量关系无变化;
(3)当点E在线段AF上时,如图2,
由(1)知,CF=EF=CD=,
在Rt△BCF中,CF=,BC=2,
根据勾股定理得,BF=,∴BE=BF﹣EF=﹣,
由(2)知,BE=AF,∴AF=﹣1,
当点E在线段BF的延长线上时,如图3,
在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,
在正方形CDEF中,∠FEC=∠FED=45°,
在Rt△CEF中,sin∠FEC= ,∴ ,
∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,
∴△ACF∽△BCE,∴ =,∴BE=AF,
由(1)知,CF=EF=CD=,
在Rt△BCF中,CF=,BC=2,
根据勾股定理得,BF=,∴BE=BF+EF=+,
由(2)知,BE=AF,∴AF=+1.
即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为﹣1或+1.
4.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
【答案】见解析.
【解析】
【分析】
延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.
【详解】
延长BF,交DA的延长线于点M,连接BD.
∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.
∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.
∵CE=AC,∴AC=CE= BD =DM.
∵FB=FM,∴BF⊥DF.
【点睛】
本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.
5.阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:
(1)下列哪个四边形一定是和谐四边形 .
A.平行四边形 B.矩形 C.菱形 D.等腰梯形
(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”).
(3)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB=BC,请求出∠ABC的度数.
【答案】(1) C ;(2)∠ABC的度数为60°或90°或150°.
【解析】
试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.
(2)根据和谐四边形定义,分AD=CD,AD=AC,AC=DC讨论即可.
(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.
(2)∵等腰Rt△ABD中,∠BAD=90°,∴AB=AD.
∵AC为凸四边形ABCD的和谐线,且AB=BC,
∴分三种情况讨论:
若AD=CD,如图1,则凸四边形ABCD是正方形,∠ABC=90°;
若AD=AC,如图 2,则AB=AC=BC,△ABC是等边三角形,∠ABC=60°;
若AC=DC,如图 3,则可求∠ABC=150°.
考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.
6.问题探究
(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.
(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;
问题解决
(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.
【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+4;(3)△PAB的周长最大值=2+4.
【解析】
试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;
(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;
(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.
试题解析:(1)结论:AM⊥BN.
理由:如图①中,
∵四边形ABCD是正方形,
∴AB=BC,∠ABM=∠BCN=90°,
∵BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠CBN+∠ABN=90°,
∴∠ABN+∠BAM=90°,
∴∠APB=90°,
∴AM⊥BN.
(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.
∵∠EFP=∠FPG=∠G=90°,
∴四边形EFPG是矩形,
∴∠FEG=∠AEB=90°,
∴∠AEF=∠BEG,
∵EA=EB,∠EFA=∠G=90°,
∴△AEF≌△BEG,
∴EF=EG,AF=BG,
∴四边形EFPG是正方形,
∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,
∵EF≤AE,
∴EF的最大值=AE=2,
∴△APB周长的最大值=4+4.
(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.
∵AB=BC,∠ABM=∠BCN,BM=CN,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60°,
∴∠APB=120°,
∵∠AKB=60°,
∴∠AKB+∠APB=180°,
∴A、K、B、P四点共圆,
∴∠BPH=∠KAB=60°,
∵PH=PB,
∴△PBH是等边三角形,
∴∠KBA=∠HBP,BH=BP,
∴∠KBH=∠ABP,∵BK=BA,
∴△KBH≌△ABP,
∴HK=AP,
∴PA+PB=KH+PH=PK,
∴PK的值最大时,△APB的周长最大,
∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,
∴△PAB的周长最大值=2+4.
7.(1)问题发现
如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF;
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.
试题解析:(1)理由是:如图1,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图1,
∵∠ADC=∠B=90∘,
∴∠FDG=180∘,点F. D. G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
AF=AF,∠EAF=∠GAF,AE=AG,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
(2)∠B+∠D=180∘时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图2,
∴∠BAE=∠DAG,
∵∠BAD=90∘,∠EAF=45∘,
∴∠BAE+∠DAF=45∘,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180∘,
∴∠FDG=180∘,点F. D. G共线,
在△AFE和△AFG中,
AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180∘;
(3)BD2+CE2=DE2.
理由是:把△ACE旋转到ABF的位置,连接DF,
则∠FAB=∠CAE.
∵∠BAC=90∘,∠DAE=45∘,
∴∠BAD+∠CAE=45∘,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45∘,
则在△ADF和△ADE中,
AD=AD,∠FAD=∠DAE,AF=AE,
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45∘,
∴∠BDF=90∘,
∴△BDF是直角三角形,
∴BD2+BF2=DF2,
∴BD2+CE2=DE2.
8.(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
【分析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为:AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
9.如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD.
(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.
(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.
(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.
【答案】(1)正方形(2)(3)2π
【解析】
分析:(1)连接OB,AC,说明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论;
(3)根据题意计算弧长即可.
详解:(1)正方形,如图1,证明连接OB,AC,说明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)
如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ∴ ;
(3)2π.
如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径的圆上运动.
所以当C点从x轴负半轴到正半轴运动时,B点的运动路径为2 .
图1 图2 图3
点睛:本题主要考查了正方形的判定,菱形的性质以及弧长的计算.灵活运用正方形的判定定理和菱形的性质运用是解题的关键.
10.如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN与△ABC重叠部分图形的面积为S(平方单位).
(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).
(2)当点M落在边BC上时,求t的值.
(3)求S与t之间的函数关系式.
(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.
【答案】(1) PQ=7-t.(2) t=.(3) 当0<t≤时,S=.当<t≤4,.当4<t<7时,.(4)或或.
【解析】
试题分析:(1)分两种情况讨论:当点Q在线段AC上时,当点Q在线段BC上时.
(2)根据AP+PN+NB=AB,列出关于t的方程即可解答;
(3)当0<t≤时,当<t≤4,当4<t<7时;
(4)或或.
试题解析:(1)当点Q在线段AC上时,PQ=tanAAP=t.
当点Q在线段BC上时,PQ=7-t.
(2)当点M落在边BC上时,如图③,
由题意得:t+t+t=7,
解得:t=.
∴当点M落在边BC上时,求t的值为.
(3)当0<t≤时,如图④,
S=.
当<t≤4,如图⑤,
.
当4<t<7时,如图⑥,
.
(4)或或..
考点:四边形综合题.
11.已知,以为边在外作等腰,其中.
(1)如图①,若,,求的度数.
(2)如图②,,,,.
①若,,的长为______.
②若改变的大小,但,的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
【答案】(1)120°;(2)①2;②2
【解析】
试题分析:(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数;
(2)①如图2,在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可;
②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论.
试题解析:
解:(1)∵AE=AB,AD=AC,
∵∠EAB=∠DAC=60°,
∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,
∴∠EAC=∠DAB,
在△AEC和△ABD中
∴△AEC≌△ABD(SAS),
∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,
∴∠BFC=∠AEB+∠ABE=120°,
故答案为120°;
(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD.
∴EC=BD.
∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°,
∴∠EBC=90°.
在RT△EBC中,EC=6,BC=4,
∴EB===2
∴AB=BE=2.
②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,
以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2.
∵K为BE的中点,BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四边形AKBH为平行四边形.
又∵∠EBC=90°,
∴四边形AKBH为矩形.∠ABE=∠ACD,
∴∠AKB=90°.
∴AK是BE的垂直平分线.
∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD,
∴∠EAB=∠DAC,
∴∠EAB+∠EAD=∠DAC+∠EAD,
即∠EAC=∠BAD,
在△EAC与△BAD中
∴△EAC≌△BAD.
∴EC=BD=6.
在RT△BCE中,BE==2,
∴AH=BE=,
∴S△ABC=BC•AH=2
考点:全等三角形的判定与性质;等腰三角形的性质
12.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.
(1)填空:AB= ,BC= .
(2)将△ABC绕点B逆时针旋转,
①当AC与x轴平行时,则点A的坐标是
②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.
③在②的条件下,旋转过程中AC扫过的图形的面积是多少?
(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.
【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.
【解析】
试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;
(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);
②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.
③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;
(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.
试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,
∴A(-4,0),B(0,3),
∴AO=4,BO=3,
在Rt△AOB中,AB=,
∵等腰直角三角形ABC,∠BAC=90°,
∴BC=;
(2)①如图1,
∵B(0,3),
∴OB=3,
∵AB=5,
∴AO=AB-BO=5-3=2,
∴A(0,-2).
当在x轴上方时,点A的坐标为(0,8),
②如图2,
过点C作CF⊥OA与点F,
∵△ABC为等腰直角三角形,
∴∠BAC=90°,AB=AC,
∴∠BAO+∠CAF=90°,
∵∠OBA+∠BAO=90°,
∴∠CAF=∠OBA,
在△AOB和△CFA中,
,
∴△AOB≌△CFA(AAS);
∴OA=CF=4,OB=AF=3,
∴OF=7,CF=4,
∴C(-7,4)
∵A(-4,0)
设直线AC解析式为y=kx+b,
将A与C坐标代入得:,
解得:,
则直线AC解析式为y=x,
∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,
∴∠ABD=90°,
∵∠CAB=90°,
∴∠ABD=∠CAB=90°,
∴AC∥BD,
∴设直线BD的解析式为y=x+b1,
把B(0,3)代入解析式的:b1=3,
∴直线BD的解析式为y=x+3;
③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,
所以可得:S=;
(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:
将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,
平行四边CAA′C′的面积为(7+)×4=,
三角形ABC的面积为×5×5=
△ABC扫过的面积为:.
考点:几何变换综合题.
13.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力的有效途径.下面是一案例,请同学们认真阅读、研究,完成“类比猜想”的问题.
习题 如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,说明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.
类比猜想:
(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,还有EF=BE+DF吗?请说明理由.
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请说明理由.
【答案】证明见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;
(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.
试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.
理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,
∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,
∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,
∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,
∴∠2+∠3=60°,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,
∴DE′+DF>EF
∴BE+DF>EF;
(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.
理由如下:如图(3),
∵AB=AD,
∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),
∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,
∵∠B+∠D=180°,
∴∠ADE′+∠D=180°,
∴点F、D、E′共线,
∵∠EAF=∠BAD,
∴∠1+∠2=∠BAD,
∴∠2+∠3=∠BAD,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∴EF=DE′+DF=BE+DF;
归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.
考点:四边形综合题.
14.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与B
展开阅读全文