资源描述
七年级下册福州数学期末试卷测试卷附答案
一、选择题
1.的平方根是()
A.4 B. C.2 D.
2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )
A. B. C. D.
3.在平面直角坐标系中,点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )
A.①②都对 B.①对②错 C.①②都错 D.①错②对
5.如图,直线,三角板的直角顶点在直线上,已知,则等于( ).
A.25° B.55° C.65° D.75°
6.下列计算正确的是( )
A. B. C. D.
7.如图,直线a∥b,∠1=74°,∠2=34°,则∠3的度数是( )
A.75° B.55° C.40° D.35°
8.如图所示,平面直角坐标系中,轴负半轴有一点,点先向上平移1个单位至,接着又向右平移1个单位至点,然后再向上平移1个单位至点,向右平移1个单位至点,照此规律平移下去,点平移至点时,点的坐标为( )
A. B. C. D.
二、填空题
9.已知是实数,且则的值是_______.
10.已知点P(3,﹣1),则点P关于x轴对称的点Q_____.
11.如图,已知AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,∠BCE=40°,则∠ADB=_____.
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度.
14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.
15.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___.
16.如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,…,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.
三、解答题
17.计算下列各题:
(1);
(2)-×;
(3)-++.
18.求满足下列各式的未知数.
(1).
(2).
19.完成下面的证明与解题.
如图,AD∥BC,点E是BA延长线上一点,∠E=∠DCE.
(1)求证:∠B=∠D.
证明:∵AD∥BC,
∴∠B=∠______________(______________)
∵∠E=∠DCE,
∴AB∥CD(______________).
∴∠D=∠______________(______________).
∴∠B=∠D.
(2)若CE平分∠BCD,∠E=50°,求∠B的度数.
20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).
(1)在平面直角坐标系中,描出O,A,B,C四点;
(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.
21.已知=0,求实数a、b的值并求出的整数部分和小数部分.
二十二、解答题
22.如图,8块相同的小长方形地砖拼成一个大长方形,
(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)
(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?
二十三、解答题
23.阅读下面材料:
小亮同学遇到这样一个问题:
已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠BED.
求证:∠BED=∠B+∠D.
(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.
证明:过点E作EFAB,
则有∠BEF= .
∵ABCD,
∴ ,
∴∠FED= .
∴∠BED=∠BEF+∠FED=∠B+∠D.
(2)请你参考小亮思考问题的方法,解决问题:如图乙,
已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.
①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;
②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).
24.已知:直线∥,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上.D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在上,且在点B的左侧.
(1)如图1,若∠BAD=25°,∠AED=50°,直接写出ÐABM的度数 ;
(2)射线AF为∠CAD的角平分线.
① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;
② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数 .
25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
26.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
【参考答案】
一、选择题
1.D
解析:D
【分析】
先算出的值,再根据平方根的定义“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.
【详解】
解:,
∵,
∴4的平方根是,
故选D.
【点睛】
本题考查了平方根,解题的关键是要先算出的值和掌握平方根的定义,并学会区分平方根和算术平方根.
2.A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移
解析:A
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;
B、图形由轴对称得到,不属于平移得到,不属于平移得到;
C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;
D、图形的大小发生变化,不属于平移得到;
故选:A.
【点睛】
本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.
3.B
【分析】
根据平面直角坐标系的四个象限内的坐标特征回答即可.
【详解】
解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,
故选:B.
【点睛】
本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.
4.C
【分析】
根据平行公理及其推论判断即可.
【详解】
解:①过直线外一点有且只有一条直线和已知直线平行,故错误;
②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;
故选:C.
【点睛】
本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.
5.C
【分析】
利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.
【详解】
解:如图
∵a//b
∴∠2=∠3,
∵∠1+∠3=180°-90°=90°
∴∠3=90°-∠1=90°-25°=65°
∴∠2=65°.
故选C.
【点睛】
本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键.
6.D
【分析】
根据算术平方根、立方根、二次根式的乘法逐项判断即可得.
【详解】
A、,此项错误;
B、,此项错误;
C、,此项错误;
D、,此项正确;
故选:D.
【点睛】
本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.
7.C
【分析】
根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.
【详解】
解:∵直线a∥b,∠1=74°,
∴∠4=∠1=74°,
∵∠2+∠3=∠4,
∴∠3=∠4-∠2=74°-34°=40°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.
8.C
【分析】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.
【详解】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2
解析:C
【分析】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可.
【详解】
由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),……,A2n-1(-2+n,n),
∵ ,
∴A2021(1009,1011),
故选:C.
【点睛】
本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.
二、填空题
9.6
【解析】
【分析】
根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.
【详解】
解:由题意得,x−2=0,y-3=0,
解得,x=2,y=3,
xy=6,
故答案为:6.
【点睛
解析:6
【解析】
【分析】
根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案.
【详解】
解:由题意得,x−2=0,y-3=0,
解得,x=2,y=3,
xy=6,
故答案为:6.
【点睛】
本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
10.(3,1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.
【详解】
解:∵点P(3,﹣1)
∴点P关于x轴对称的点Q(3,1)
故答案为(3,1).
【点睛】
本题主要
解析:(3,1)
【分析】
根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.
【详解】
解:∵点P(3,﹣1)
∴点P关于x轴对称的点Q(3,1)
故答案为(3,1).
【点睛】
本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.
11.100°
【分析】
根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB
解析:100°
【分析】
根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.
【详解】
解:∵AD是ABC的角平分线,∠BAC=60°.
∴∠BAD=∠CAD=∠BAC=30°,
∵CE是ABC的高,
∴∠CEA=90°.
∵∠CEA+∠BAC+∠ACE=180°.
∴∠ACE=30°.
∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.
∴∠ADB=40°+30°+30°=100°.
故答案为:100°.
【点睛】
本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
13.【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
解析:【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质.
14.5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
15.(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),A
解析:(0,2)、(﹣4,﹣2).
【分析】
由点A(a-2,a),及AB⊥x轴且AB=2,可得点A的纵坐标的绝对值,从而可得a的值,再求得a-2的值即可得出答案.
【详解】
解:∵点A(a﹣2,a),AB⊥x轴,AB=2,
∴|a|=2,
∴a=±2,
∴当a=2时,a﹣2=0;当a=﹣2时,a﹣2=﹣4.
∴点A的坐标是(0,2)、(﹣4,﹣2).
故答案为:(0,2)、(﹣4,﹣2).
【点睛】
本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.
16.【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,
解析:
【分析】
由题目中所给的点运动的特点找出规律,即可解答.
【详解】
由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)
到达(1,0)时用了3秒,到达(2,0)时用了4秒,
从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;
从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;
依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,
可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,
∵20×20=400
∴第421秒时这个点所在位置的坐标为(19,20),
故答案为:(19,20).
【点睛】
本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键.
三、解答题
17.(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要
解析:(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
18.(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
解析:(1)或;(2)
【分析】
(1)根据平方根的定义直接开平方求解即可;
(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.
【详解】
解:(1),
即或,
解得或.
(2),
,
解得.
【点睛】
本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.
19.(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.
【分析】
(1)根据平行线的性质及判定填空即可;
(2)由∠E=∠DCE,∠E=50°,
解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80°.
【分析】
(1)根据平行线的性质及判定填空即可;
(2)由∠E=∠DCE,∠E=50°,可得AB∥CD,∠DCE=50°,而CE平分∠BCD,即得∠BCD=100°,故∠B=80°.
【详解】
(1)证明:∵AD∥BC,
∴∠B=∠EAD(两直线平行,同位角相等),
∵∠E=∠DCE,
∴AB∥CD(内错角相等,两直线平行),
∴∠D=∠EAD(两直线平行,内错角相等),
∴∠B=∠D;
故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;
(2)解:∵∠E=∠DCE,∠E=50°,
∴AB∥CD,∠DCE=50°,
∴∠B+∠BCD=180°,
∵CE平分∠BCD,
∴∠BCD=2∠DCE=100°,
∴∠B=80°.
【点睛】
本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算.
20.(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
解析:(1)见解析;(2)正方形
【分析】
(1)根据平面直角坐标系找出各点的位置即可;
(2)观察图形可知四边形ABCO是正方形.
【详解】
解:(1)如图.
(2)四边形ABCO是正方形.
【点睛】
本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.
21.4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,
解析:4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a、b的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,b=21,
∵16<21<25,
∴的整数部分是4,小数部分是.
【点睛】
本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
二十二、解答题
22.(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:
解析:(1) 长是1.5m,宽是0.5m.;(2)不能.
【解析】
【分析】
(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;
(2)把正方形的边长与大长方形的长比较即可.
【详解】
解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:
,
解得:,
∴长是1.5m,宽是0.5m.
(2)∵正方形的面积为7平方米,
∴正方形的边长是米,
∵<3,
∴他不能剪出符合要求的桌布.
【点睛】
本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.
二十三、解答题
23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,
解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;
②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.
【详解】
解:(1)过点E作EF∥AB,
则有∠BEF=∠B,
∵AB∥CD,
∴EF∥CD,
∴∠FED=∠D,
∴∠BED=∠BEF+∠FED=∠B+∠D;
故答案为:∠B;EF;CD;∠D;
(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=∠EBA+∠EDC.
即∠BED=∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,
∴∠BED=∠EBA+∠EDC=65°.
答:∠BED的度数为65°;
②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.
∴∠BEF=180°﹣∠EBA,
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠EDC.
∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.
即∠BED=180°﹣∠EBA+∠EDC,
∵BE平分∠ABC,DE平分∠ADC,
∴∠EBA=∠ABC=,∠EDC=∠ADC=,
∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.
答:∠BED的度数为180°﹣.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
24.(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,
解析:(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,运用角的等量代换换算即可.
【详解】
.
解:(1)设在上有一点N在点A的右侧,如图所示:
∵
∴,
∴
∴
(2)①.
证明:设,.
∴.
∵为的角平分线,
∴.
∵,
∴.
∴.
∴.
②当点在点右侧时,如图:
由①得:
又∵
∴
∵
∴
当点在点左侧,在右侧时,如图:
∵为的角平分线
∴
∵
∴,
∵
∴
∴
∵
∴
又∵
∴
∴
当点和在点左侧时,设在上有一点在点的右侧如图:
此时仍有,
∴
∴
综合所述:或
【点睛】
本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.
25.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
26.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外
解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤
【分析】
(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;
(2)想要利用外角的性质求解,就需要构造外角,因此延长交于,然后根据外角的性质确定,,即可判断与,,之间的关系;
(3)①连接BC,然后根据(1)中结论,代入已知条件即可求解;
②连接BC,然后根据(1)中结论,求得的和,进而得到的和,然后根据角平分线求得的和,进而求得,然后利用三角形内角和定理,即可求解;
③连接BC,首先求得,然后根据十等分线和三角形内角和的性质得到,然后得到的和,最后根据(1)中结论即可求解;
④设与的交点为点,首先利用根据外角的性质将用两种形式表示出来,然后得到,然后根据角平分线的性质,移项整理即可判断;
⑤根据(1)问结论,得到的和,然后根据角平分线的性质得到的和,然后利用三角形内角和性质即可求解.
【详解】
(1)∵,(三角形内角和180°)
∴,(等式性质)
∵,
∴,
∴.(等量代换)
故答案为:三角形内角和180°;等量代换.
(2)如图,延长交于,
由三角形外角性质可知,
,,
∴.
(3)①如图①所示,连接BC,
,
根据(1)中结论,得,
∴,
∴;
②如图②所示,连接BC,
,
根据(1)中结论,得,
∴,
∵与的角平分线交于点,
∴,,
∴,
∵,,
∴,
∴,
∵,
∴;
③如图③所示,连接BC,
,
根据(1)中结论,得,
∵,,
∴,
∵与的十等分线交于点,
∴,,
∴,
∴,
∵,
∴,
∴,
∴,
∴;
④如图④所示,设与的交点为点,
∵平分,平分,
∴,,
∵,,
∴,
∴,
∴,
即;
⑤∵,的角平分线交于点,
∴,
∴.
【点睛】
本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.
展开阅读全文