资源描述
人教版五年级上册数学应用题附答案
1.节约点滴,川流不息。某市自来水公司鼓励节约用水,采取按月分段计费的方法收取水费。12吨以内(包括12吨)每吨3.5元;超过12吨的部分,每吨4.6元。笑笑家7月份的用水量为14吨,应缴水费多少元?
2.有一条长35米,宽24米的花坛,如果在这个花坛的四周修2.5米宽的小路(如图,单位:米)小路的面积是多少平方米?
3.五年级一班48个同学集体合影。定价是24.5元,给4张相片。另外加印是每张2.3元。全班每人一张,再送给班主任和5个科任教师每人一张,一共要付多少元?
4.自从开展“节能减排,低碳生活”活动以来,红旗小学平均每月节约用电200千瓦时。如果按每千瓦时电费1.5元计算,这所学校全年可以节约电费多少元?
5.人民广场有一块边长25米的正方形草坪,现在围着这块草坪要修一条宽1.2米小路(如图)。请你算一算,这条小路的面积约是多少平方米?(得数保留整数)
6.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗?
7.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
8.某市水费收费标准如下图,小飞家12月用水量为4.8吨,要付水费多少钱?
水费收费标准①3吨以内每吨收费1.1元(包括3吨)
②超过3吨的部分,每吨1.3元(不足1吨,按1吨计算)
9.王阿姨去超市购物。她买了2箱牛奶,每箱38.5元。还买了1.5kg肉,每千克32.8元。王阿姨一共花了多少钱?
10.某市出租车收费标准如下,李老师乘出租车行驶10.4千米,他应付多少元?
路程
标准
2千米以内
8元
超过2千米
每千米1.5元(不足1千米的按1千米计算)
11.果园里有520千克樱桃,要用最多可以装12千克的纸箱运走,至少需要多少个这样的纸箱才能全部运完?
12.两工程队同时开凿一条1377米长的隧道。各从一端相向施工,甲队的开凿速度是乙队的1.25倍,45天后完成施工。甲、乙两队每天分别开凿多少米?
13.两列火车从相距550km的两地同时相向开出。甲车每小时行120km,乙车每小时行100km,经过几小时两车相遇?(先写出数量关系式,再列方程解答)
14.春节快到了,某超市购买了一批中国结用于节日装饰。其中小中国结有540只,比购进的大中国结的4倍少60只,超市购进多少只大中国结?(用方程解答)
15.电脑小组男生人数是女生人数的3倍,后来有8名男生转到科技小组,这时电脑小组男、女生人数一样多。原来电脑小组男、女生各有多少人?(列方程解答)
16.某汽车销售公司去年第五季度售出小汽车和面包车共84辆。售出的小汽车数量是面包车数量的3倍。这个公司去年第五季度销售小汽车和面包车各多少辆?(列方程解决问题)
17.聪聪和明明家距离996米,他们同时从家出发到学校,12分钟后他们在学校大门相遇,聪聪每分钟走40米,明明每分钟走多少米?(用方程解)
18.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答)
19.鸡兔同笼,鸡比兔多1只,共有腿62条。鸡和兔各有多少只?
20.两列火车从相距540km的两地同时相向开出,经过2.7小时相遇。甲车每小时行105km,乙车每小时行多少千米?(先写出等量关系式,再列方程解答)
21.把一桶18.9升的桶装水分装在0.55升的塑料瓶中,需要准备多少个瓶子?
22.甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,已知甲车每小时行40千米,乙车每小时行35千米。填空并回答问题:
(1)相遇时,两车行了( )小时。
(2)相遇时,甲车行了( )千米。
(3)相遇后两车立即返回各自的出发地,这时甲车把速度提高到原来的,乙车速度不变。当甲车返回到A地时,乙车还需多少小时才能到达B地?(写出必要的计算过程)
23.李叔叔用17.5千克的葡萄晒出了3.5千克的葡萄干。
(1)1千克葡萄可以晒葡萄干多少千克?
(2)用多少葡萄可以晒出10.5千克葡萄干?
24.李老师租了一台“充电宝”,当天忘记归还,共使用了26.9小时,他将支付多少钱?
租金说明
①每0.5小时收费1.5元,不足0.5小时按0.5小时计费;
②满24小时收费合计20元,24小时后按时计费。
25.一辆汽车0.4小时行驶25千米,这辆汽车每小时行驶多少千米?行驶1千米,这辆汽车需要多少小时?
26.芳芳说:我16秒跑了76.8米;洋洋说:我32秒跑了150.4米。根据上述信息提出一个用三步计算的数学问题,并解答。
问题:____________?
解答:____________。
27.一辆汽车3小时行驶180.6千米。照这样计算,4.5小时行驶多少千米?
28.聪聪的爷爷买了一箱苹果和一把香蕉,共花了189.3元。这把香蕉重多少千克?
29.近年来,柳州螺蛳粉远销海外,实现了地方小吃向国际产业的转变。
(1)某厂家有3条自动化螺蛳粉生产线,4小时能生产米粉9.6吨。照这样计算,一条自动化螺蛳粉生产线每小时能生产米粉多少吨?
(2)小莉要给在重庆的表哥寄一箱3.3kg螺蛳粉。某快递公司寄到重庆的快递收费标准如下,请算一算小莉要付多少快递费?
收费标准:1kg以内6元;超过1kg的部分,每千克2.5元(不足1kg按1kg计算)。
30.5月31日是“世界无烟日”,黄老师和农老师组织五、六年级的学生参加戒烟宣传活动,其中五年级参加的人数是六年级的1.2倍,且五年级比六年级多36人,五、六年级各有多少人参加?(列方程解答)
31.少先队员参加植树活动,五年级去的人数是四年级的1.2倍,五年级去的人数比四年级多20人。原来两个年级各去了多少人?(列方程解答)
32.一块三角形的麦地,底是800米,高是400米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块地能收小麦多少吨?
33.探索梯形时,将梯形转化为学过的图形,通过比较转化前后图形的面积得到梯形的面积。若将梯形转化为学过的三角形(如图),怎么得出梯形的面积公式呢?请写出你的思考过程。
34.学校开运动会需要制作一些锦旗,如下图,这面锦旗至少需要多少平方厘米的面料?(接头处不计)
35.陈伯伯靠墙围了一个梯形菜地(靠墙的一边不用篱笆),如下图,已知篱笆长57米,求这块菜地的面积有多少平方米?
36.一个三角形,如果高增加6cm,底不变,面积就增加18cm2;如果底减少4cm,高不变,面积就减少24cm2。原来这个三角形的面积是多少平方厘米?
37.李叔叔用篱笆围成一个养鸭场(如图),一边利用房屋的墙壁,已知篱笆长是86米,求这个养鸭场地的占地面积。
38.一个直角梯形,上底是24cm,如果上底增加16cm,下底不变,这个直角梯形就变成一个正方形.求原来梯形的面积.
39.如图,ABCD是平行四边形,AB=4BE,BC=3BF。△BEF的面积是12cm2,平行四边形ABCD的面积是多少cm2。
40.一块梯形地上底长220米,下底长340米,高是57.5米,共收油籽3542千克.平均每公顷产油籽多少千克?
41.实验小学四、五年级喜欢足球的学生数共360人,五年级喜欢足球的学生数是四年级喜欢足球的学生数的4倍多15人,两个年级喜欢足球的学生各多少人?(用方程解答)
42.学校购买一批篮球和足球,篮球的个数是足球的3.5倍,足球的个数比篮球少20个。篮球和足球各多少个?(列方程解答)
43.卡车运了多少吨?
44.甲、乙两个水池中原来共存水60吨。甲池放水1小时用去了5吨,乙池进水1小时增加了7吨,现在甲池中的水比乙池少4吨。
(1)现在两个水池中共存水多少吨?
(2)原来乙池中存水多少吨?
45.同学们去参观历史博物馆,四年级和五年级共去了480人,其中五年级去的人数是四年级的3倍。四年级的参观人数是多少?
46.张老师买4支同样的钢笔比买1个足球多用42.8元,1个足球的价格是1支钢笔的2倍,1支钢笔多少元?(列方程解答)
47.电脑小组男生人数是女生人数的3倍,后来有8名男生转到科技小组,这时电脑小组男、女生人数一样多。原来电脑小组男、女生各有多少人?(列方程解答)
48.小明和小芳是集邮爱好者,小明的邮票数量是小芳的5倍,如果小明给小芳38张,他们的邮票数量正好相等,小明和小芳原来各有多少张邮票?(用方程解)
49.某养殖场鸡的只数是鸭的3倍,鸡和鸭一共480只,那么它们分别有多少只?(用方程解答)
50.两个完全一样的直角三角形,部分重叠在一起,如图,阴影部分的面积是多少?(单位:cm)
51.男子110米跨栏跑是径赛项目的一种,110米跨栏跑的赛道是由110米的跑道和跑道上的10个跨栏组成的(赛道局部如下图),从起跑线到第1栏的距离是13.72米,第1栏到第10栏每相邻两栏之间的距离相等,从第10栏到终点的距离是14.02米。每相邻两个栏之间的距离是多少米?请你想一想先画一画线段图,再写出计算过程。
52.某停车场规定:停车一次至少交停车费5元,可以停两小时;超过2小时的部分,每停1小时(不够1小时,按1小时计算)收1.5元。爸爸共交停车费12.5元,他的车在停车场最多停了多长时间?
53.某复印店对于用A4纸复印的收费标准如下表。
项目
收费标准
普通A4纸复印
20张以内(含20张),0.5元/张
超过20张的部分,0.4元/张
彩色A4纸复印
0.8元/张
兰兰要复印一份资料,需要用48张普通A4纸,她复印这份资料应付多少钱?
54.某市为鼓励市民节约用水,规定水费收费标准如下:每月用水10吨以内(包括10吨),每吨2.5元;超过10吨的部分,每吨3.5元。小英家上个月用水17吨,应缴费多少元?
55.网上书城开展图书促销活动,购书满100元立减10元,杨老师在网上书城购买了3本书,定价分别是32.00元,27.50元,56.80元,杨老师一共要付多少钱?
56.某市的出租车收费标准如下:乘车路程2千米(包括2千米)收费6元,超过2千米的部分每千米收费1.2元(不足1千米按1千米计算),张老师打车上班花了10.8元,张老师家距离学校多少千米?
57.你知道郑州地铁是怎样制定票价的吗?
郑州地铁票价实行分段计价收费制,票价区间是2元~9元。第一个收费区间是起步价:票价2元,行驶里程在6千米以内(含6千米);第二个收费区间是:行驶里程在6~13千米之间,票价3元,是在起步价2元的基础上加1元;第三个收费区间是:行驶里程在13~21千米之间,再加1元;第四个收费区间是:行驶里程在21千米以上,每增加9千米加1元。
(1)上图中已经画出了部分收费区间的计价情况,请在图中画出第四个收费区间的计价情况。
(2)地铁1号线的五一公园站到市体育中心站,票价为5元,童童认为五一公园站到市体育中心站大约有19.5千米,她认为的对吗?通过分析说明你的结论。
58.某市为鼓励居民节约用电,规定收费标准如下:每户每月用电量1~240千瓦时,每千瓦时0.49元;超过240千瓦时、不超过400千瓦时的部分,每千瓦时0.53元;超过400千瓦时的部分,每千瓦时0.79元。
(1)小明家上月用电量为250千瓦时,电费是多少?
(2)小丽家上月用电量为420千瓦时,电费是多少?
59.元旦佳节,小新和爸爸妈妈一起去电影院观看电影,共花了97.5元钱,已知成人票的票价是儿童票的2倍,买一张儿童票需要多少钱?(列方程解答)
60.在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?
61.琳琳准备购买4千克苹果和2千克葡萄。
62.一根木头长12米,要把它锯成长度相等的6段,每锯一次需要7分钟,锯完一共需要多少分钟?
63.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?
64.某校五年级同学去参观科技展览。272人排成两路纵队,前后相邻两排各相距0.8米,队伍每分钟走60米。现在要过一座长810米的桥,从排头两人上桥到排尾两人离开桥,共需要多少分?
65.在正方形的操场四周栽树,每隔10米栽一棵(四个角都栽树),如果操场的周长是520米,那么一共能栽( )棵树,每边有( )棵.
66.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯?
67.元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?
68.参加阅兵的战土有1200人,平均分成5个方队,队距75米。每个方队6人一排,相邻两排距离0.8米。整个阅兵队伍的长多少米?
69.王阿姨到水果市场买了1.6千克的香蕉,付给售货员10元后,找回1.2元。那么每千克香蕉应该是多少元?
70.有一条长1800米的公路,在公路的一侧从头到尾每隔6米栽一棵树,一共需要准备多少棵树苗?
【参考答案】
1.2元
【解析】
根据总价=单价×数量,分别求出12吨以内的费用,以及超过12吨的部分的费用,然后求和,求出应缴水费多少元即可。
3.5×12+4.6×(14-12)
=3.5×12+4.6×2
=42+9.2
=51.2(元)
答:应缴水费51.2元。
【点睛】
此题主要考查了乘法、加法的意义的应用,解答此题的关键是熟练掌握单价、总价、数量的关系。
2.320平方米
【解析】
由题意可知,外面的大长方形的长为(35+2.5×2)米,宽为(24+2.5×2)米,小路的面积=大长方形的面积-小长方形的面积,根据长方形的面积公式分别计算大长方形和小长方形的面积,再相减即可得解。
(35+2.5×2)×(24+2.5×2)
=(35+5)×(24+5)
=40×29
=1160(平方米)
35×24=840(平方米)
1160-840=320(平方米)
答:小路的面积是320平方米。
【点睛】
本题考查长方形的面积,明确大长方形的长和宽是解题的关键。
3.5元
【解析】
照完后送4张相片,全班每人要一张,再送给班主任和5个科任教师每人一张,也就是说五年级一班还需要再加印张相片就可以了。求出这50张相片的价格,再加上24.5元即可。
(元)
答:一共要付139.5元。
【点睛】
此题主要考查了乘法、加法的意义的应用,要熟练掌握,解答此题的关键是要明确单价、总价、数量的关系。
4.3600元
【解析】
用每个月节约的用电量乘每千瓦时的电费,即可求出这所学校每个月可以节约的电费,再乘12个月,即可求出这所学校全年可以节约电费多少元。
200×1.5×12
=300×12
=3600(元)
答:这所学校全年可以节约电费3600元。
【点睛】
本题考查小数乘法的计算及应用,理解一年是12个月,注意计算的准确性。
5.126平方米
【解析】
用草坪的边长加上路宽度的2倍,求出草坪和路组成的大正方形的边长,从而求出大正方形的面积。将大正方形的面积减去草坪的面积,即可求出小路的面积。
(25+1.2×2)×(25+1.2×2)-25×25
=(25+2.4)×(25+2.4)-625
=27.4×27.4-625
=750.76-625
=125.76
≈126(平方米)
答:这条小路的面积约是126平方米。
【点睛】
本题考查了正方形的面积,正方形面积=边长×边长。
6.够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。
8.8≈9
5.9≈6
9×6=54(平方米)
8分米=0.8米
0.8×0.8×100
=0.64×100
=64(平方米)
54<64,够。
答:100块够。
【点睛】
掌握用估算解决小数乘法应用题的方法是解题的关键。
7.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
8.9元
【解析】
小飞家12月用水量为4.8吨,按5吨计算,3吨按每吨1.1元收费,超过的(5-3)吨按每吨1.3元收费,最后求出两种费用之和,据此解答。
4.8吨≈5吨
3×1.1+(5-3)×1.3
=3×1.1+2×1.3
=3.3+2.6
=5.9(元)
答:要付水费5.9元。
【点睛】
根据“总价=单价×数量”求出不同阶段的费用是解答题目的关键。
9.2元
【解析】
用牛奶的箱数乘每箱的单价,可得出买牛奶花的价钱。用每千克肉的单价,乘肉的重量,可得出买肉花的价钱。把买牛奶和买肉的价钱加起来,即可得解。
(元)
答:王阿姨一共花了126.2元。
【点睛】
此题的解题关键是掌握单价、数量和总价三者之间的关系,列出算式,求出结果。
10.5元
【解析】
由题意,可把10.4千米看作11千米,先减去2千米,再乘1.5元,计算出属于第二个段位应付车费,列综合算式为(11-2)×1.5;最后再加上8元,就是一共应付的车费。
10.4-2=8.4(千米)
8.4≈9(千米)
9×1.5+8
=13.5+8
=21.5(元)
或10.4≈11(千米)
(11-2)×1.5+8
=9×1.5+8
=13.5+8
=21.5(元)
答:他应付21.5元。
【点睛】
一是要读懂收费标准,理解每一个段位里的计费方法;其次,要懂得把不足整数千米的距离记作整千米数,使其符合出租车计费方法。
11.44个
【解析】
需要纸箱的数量=樱桃的总质量÷每个纸箱可以装樱桃的质量,余下的樱桃装不满一个纸箱时,需要多准备一个纸箱,结果用进一法保留整数,据此解答。
520÷12≈44(个)
答:至少需要44个这样的纸箱才能全部运完。
【点睛】
本题主要考查商的近似数,根据实际情况用进一法取整数是解答题目的关键。
12.甲队每天开凿17米,乙队每天开凿13.6米
【解析】
根据题意,这道题的等量关系是:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,根据这个等量关系,列方程解答。
解:设乙队每天开凿x米,则甲队每天开凿1.25x米。
(x+1.25x)×45=1377
2.25x×45=1377
2.25x×45÷45=1377÷45
2.25x=30.6
2.25x÷2.25=30.6÷2.25
x=13.6
(米)
答:甲队每天开凿17米,乙队每天开凿13.6米。
【点睛】
本题用方程解答比较简单,解题关键是找出题目中的等量关系:(甲队开凿的速度乙队开凿的速度)工作时间隧道的总长度,列方程解答。
13.相遇时间×速度和=路程;2.5小时
【解析】
相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的数量关系:相遇时间×速度和=路程,假设经过x小时两车相遇,根据数量关系列方程,求出相遇时间即可。
数量关系式:相遇时间×速度和=路程。
解:设经过x小时两车相遇。
x×(120+100)=550
220x=550
x=550÷220
x=2.5
答:经过2.5小时两车相遇。
【点睛】
本题考查行程问题的解题方法,解题关键是掌握相遇问题的数量关系,利用相遇时间×速度和=路程,列方程计算求出相遇时间。
14.150只
【解析】
设购进的大中国结有x只,根据关系式:大中国结的数量×4-60=小中国结的数量,据此列方程求解。
解:设购进的大中国结有x只。
答:超市购进150只大中国结。
【点睛】
解答本题的关键是认真审题,然后找出数量关系式是解题的关键。
15.女生:4人;男生:12人
【解析】
设原有女生人数为x人,原有男生人数用x表示。再根据男生、女生之间的等量关系:原有男生人数-8=原有女生人数,列方程解决问题。
解:设原来电脑小组女生有x人,则男生有3x人。
3x-8=x
2x=8
x=4
3x=3×4=12
答:原来电脑小组女生有4人,男生有12人。
【点睛】
列方程解决问题的关键是找到事物间的等量关系。
16.面包车21辆;小汽车63辆
【解析】
根据售出的小汽车的数量是面包车数量的3倍,设售出面包车x辆,则小汽车为3x辆,根据售出小汽车和面包车共84辆,列方程解答。
解:设这个公司去年第五季度销售的面包车数量为x辆。
x+3x=84
4x=84
4x÷4=84÷4
x=21
84-21=63(辆)
【点睛】
此题属于和倍问题,解题关键是用倍数解设,用和列方程。
17.43米
【解析】
将明明的速度设为未知数,两人相遇时,两人的路程和等于两家的距离996米。根据这个数量关系,列方程解方程即可。
解:设明明每分钟走x米。
答:明明每分钟走43米。
【点睛】
本题考查了相遇问题,两人同时相向而行,相遇时两人的路程和等于两地的距离。
18.乙队80米;甲队100米
【解析】
设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米,再根据两人4天共铺720米,列出方程解答即可。
解:设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米。
(米)
答:甲队每天铺柏油路100米,乙队每天铺柏油路80米。
【点睛】
本题考查列方程解决问题,解答本题的关键是掌握题中的等量关系式。
19.兔子有10只,鸡有11只
【解析】
鸡比兔多1只,设兔子有只,则鸡有只;鸡有2条腿,兔有4条腿,根据等量关系:兔子的只数×4+鸡的只数×2条,即可列方程解答。
解:设兔有x只,则鸡有(x+1)只。
(只)
答:兔子有10只,鸡有11只。
【点睛】
本题考查了列含有两个未知数的方程,找出题目中的等量关系是解此题的关键。
20.等量关系式:路程=速度和×相遇时间;95千米
【解析】
相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的等量关系:路程=速度和×相遇时间,假设乙车每小时行驶x千米,那么两车的速度和是(105+x)千米,根据等量关系式列方程,解方程即可。
等量关系式:路程=速度和×相遇时间。
解:设乙车每小时行驶x千米。
(105+x)×2.7=540
(105+x)×2.7÷2.7=540÷2.7
105+x=200
105+x-105=200-105
x=95
答:乙车每小时行95千米。
【点睛】
本题考查行程问题的解题方法,解题关键是掌握相遇问题的等量关系,利用相遇时间×速度和=路程,列方程解答即可。
21.35个
【解析】
用桶装水的量÷塑料瓶容量,结果用进一法保留整数即可。
18.9÷0.55≈35(个)
答:需要准备35个瓶子。
【点睛】
最后无论剩下多少水,都得需要一个瓶子来装。
22.A
解析:(1)4;(2)160;(3)0.8小时
【解析】
(1)先把两车的速度相加,求出速度和,再用总路程除以速度和,就是两车的相遇时间,即两车行驶的时间。
(2)根据速度×时间=路程,用甲车的速度乘4小时即可解答。
(3)根据分数乘法的意义,用甲车的速度乘求出甲车返回的速度,再用甲车行驶的路程除以返回的速度求出返回的时间,再用4小时减去甲车返回的时间(即乙车返回的时间)即可解答。
(1)300÷(35+40)
=300÷75
=4(小时)
(2)40×4=160(千米)
(3)4-160÷(40×)
=4-160÷50
=4-3.2
=0.8(小时)
答:当甲车返回到A地时,乙车还需0.8小时才能到达B地。
【点睛】
本题考查了路程问题的数量关系:速度×时间=路程的灵活运用。
23.(1)0.2千克(2)52.5千克
【解析】
(1)用晒出的葡萄干的质量除以所用葡萄的质量,可以计算出1千克葡萄可以晒葡萄干多少千克;
(2)用晒出的葡萄干的质量除以1千克葡萄可以晒葡萄干质量,可以计算出需要多少葡萄可以晒出10.5千克葡萄干。
(1)3.5÷17.5=0.2(千克)
答:1千克葡萄可以晒葡萄干0.2千克。
(2)10.5÷0.2=52.5(千克)
答:用52.5千克葡萄可以晒出10.5千克葡萄干。
【点睛】
本题考查小数除法的应用,找出等量关系,代入数据进行解答即可。
24.29元
【解析】
26.9小时超过了24小时,所以前24小时收费20元。剩余的部分按照每0.5小时收费1.5元收费,不足0.5小时按照0.5小时收费,先算出有几个0.5小时,再根据总价单价数量,将数据代入,最后再加上20元,据此即可得出答案。
(小时)
因为不足0.5小时按0.5小时计费,所以2.9小时按照3小时计算。
3÷0.5×1.5+20
=6×1.5+20
=9+20
=29(元)
答:他将支付29元。
【点睛】
解答此题需要分情况探讨,明确题目中所给数量属于哪一种情况,由此选择正确的解题方法。
25.5千米;0.016小时
【解析】
求这辆汽车每小时行驶多少千米,就是求这辆汽车的速度,根据速度=路程÷时间,代入数据计算即可;
求行驶1千米,这辆汽车需要多少小时,就是求时间,根据时间=路程÷速度,代入数据计算即可。
25÷0.4=62.5(千米)
1÷62.5=0.016(小时)
答:这辆汽车每小时行驶62.5千米;行驶1千米,这辆汽车需要0.016小时。
【点睛】
掌握速度、时间、路程三者之间的关系,以及小数除法的计算法则及应用是解题的关键。
26.洋洋每秒比芳芳少跑多少米;0.1米
【解析】
提出的用三步计算的数学问题:洋洋每秒比芳芳少跑多少米?首先根据:路程时间速度,分别用两人跑的路程除以用的时间,求出两人的速度各是多少;然后用芳芳的速度减去洋洋的速度即可。
问题:洋洋每秒比芳芳少跑多少米?
(米)
答:洋洋每秒比芳芳少跑0.1米。
【点睛】
此题主要考查了行程问题中速度、时间和路程的关系:速度时间路程,路程时间速度,路程速度时间,要熟练掌握。
27.9千米
【解析】
根据速度=路程÷时间求出这辆汽车的速度,再乘4.5,就是4.5小时行驶的路程,据此解答。
180.6÷3×4.5
=60.2×4.5
=270.9(千米)
答:4.5小时行驶270.9千米。
【点睛】
本题主要考查了学生对路程、速度和时间三者之间关系的掌握情况。
28.4千克
【解析】
根据题意,一箱苹果15千克,每千克11元,依据“单价×数量=总价”,求出买苹果花掉的钱数,再用总钱数减去买苹果花掉的钱数,求出买香蕉所用的钱数,再用买香蕉所用的钱数÷单价=香蕉的重量,列式解答即可。
11×15=165(元)
189.3-165=24.3(元)
24.3÷4.5=5.4(千克)
答:这把香蕉重5.4千克。
【点睛】
此题解答的关键是先认真分析题意,然后根据单价、数量和总价三者之间的关系进行解答即可得出结论。
29.(1)0.8吨;(2)13.5元
【解析】
(1)求一条生产线每小时能生产米粉的吨数,用生产米粉的吨数连续除以生产的时间和自动化生产线的条数即可得解;
(2)螺蛳粉的重量是3.3kg,超出部分的重量是(3.3-1)kg,不足1kg按1kg计算,取整数,然后乘2.5即可计算出超出部分收取的费用,再加上1kg以内的费用6元,即是小莉要付的快递费。
(1)9.6÷4÷3
=2.4÷3
=0.8(吨)
答:一条自动化螺蛳粉生产线每小时能生产米粉0.8吨。
(2)3.3-1=2.3(kg)取整千克数3kg。
3×2.5+6
=3×2.5+6
=7.5+6
=13.5(元)
答:小莉要付13.5元的快递费。
【点睛】
此题考查了小数的连除运算和小数的四则运算,难点是分段计费问题,解答此题关键是明确属于按哪一段的收费标准收费。
30.216人;180人
【解析】
五年级参加的人数是六年级的1.2倍,我们可以设六年级的人数为x人,则五年级参加的人数为1.2x人,再根据五年级比六年级多36人,列出方程求解,即可知道五六年级的人数。
解:设六年级参加的人数为x人,则五年级参加的人数为1.2x人。
1.2x-x=36
0.2x=36
0.2x÷0.2=36÷0.2
x=180
180×1.2=216(人)
答:五年级参加的人数为216人,六年级参加的人数为180人。
【点睛】
本题考查列方程解决差倍问题,解答本题的关键是根据倍数关系设1倍量为x。
31.四年级100人,五年级120人
【解析】
设四年级去了x人,则五年级去了1.2x人。五年级去的人数-四年级去的人数=20,据此列方程解答。
解:设四年级去了x人,则五年级去了1.2x人。
1.2x-
解析:四年级100人,五年级120人
【解析】
设四年级去了x人,则五年级去了1.2x人。五年级去的人数-四年级去的人数=20,据此列方程解答。
解:设四年级去了x人,则五年级去了1.2x人。
1.2x-x=20
0.2x=20
x=100
五年级:100×1.2=120(人)
答:四年级去了100人,五年级去了120人。
【点睛】
列方程解含有两个未知数的问题时,设其中的一个未知数是x,用含有x的式子表示另一个未知数,再根据等量关系即可列出方程。
32.96吨
【解析】
根据三角形的面积公式:S=ah÷2,求出这块麦田的面积是多少平方米,再换算成公顷,然后根据单产量×数量=总产量,据此列式解答。
800×400÷2
=320000÷2
=16000
解析:96吨
【解析】
根据三角形的面积公式:S=ah÷2,求出这块麦田的面积是多少平方米,再换算成公顷,然后根据单产量×数量=总产量,据此列式解答。
800×400÷2
=320000÷2
=160000(平方米)
=16(公顷)
16×6000=96000(千克)=96(吨)
答:这块地能收小麦96吨。
【点睛】
此题主要考查三角形的面积公式在实际生活中的应用,注意面积单位之间的换算。
33.见详解
【解析】
由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。
小三角形的面积=ah÷2=ah
大三角形的
解析:见详解
【解析】
由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。
小三角形的面积=ah÷2=ah
大三角形的面积=bh÷2=bh
梯形的面积=小三角形的面积+大三角形的面积
=ah+bh
=(a+b)h
=(a+b)h
【点睛】
掌握三角形面积计算方法,把梯形转化为两个三角形,进而推导出梯形面积是解答此题的关键。
34.1575平方厘米
【解析】
如图,锦旗的面积=长方形的面积-空白三角形的面积,根据长方形的面积=长×宽,三角形的面积=底×高÷2,代入数据计算即可。
60×30=1800(平方厘米)
30×(60
解析:1575平方厘米
【解析】
如图,锦旗的面积=长方形的面积-空白三角形的面积,根据长方形的面积=长×宽,三角形的面积=底×高÷2,代入数据计算即可。
60×30=1800(平方厘米)
30×(60-45)÷2
=30×15÷2
=450÷2
=225(平方厘米)
1800-225=1575(平方厘米)
答:这面锦旗至少需要1575平方厘米的面料。
【点睛】
掌握组合图形面积的计算方法以及长方形、三角形面积公式的应用是解题的关键。
35.270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
解析:270平方米
【解析】
看图,用篱笆的长度减去27米,可以求出这个梯形菜地的上下底之和,从而根据梯形的面积公式,列式求出菜地的面积。
(57-27)×18÷2
=30×18÷2
=270(平方米)
答:这块菜地的面积是270平方米。
【点睛】
本题考查了梯形的面积,梯形面积=(上底+下底)×高÷2。
36.36平方厘米
【解析】
(18×2÷6)×(24×2÷4)÷2
=6×12÷2
=36(平方厘米)
答:原来这个三角形的面积是36平方厘米。
解析:36平方厘米
【解析】
(18×2÷6)×(24×2÷4)÷2
=6×12÷2
=36(平方厘米)
答:原来这个三角形的面积是36平方厘米。
37.380平方米
【解析】
(86-10)×10÷2
=76×10÷2
=380(平方米)
答:养鸭场的占地面积是380平方米。
解析:380平方米
【解析】
(86-10)×10÷2
=76×10÷2
=380(平方米)
答:养鸭场的占地面积是380平方米。
38.1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
解析:1280cm2
【解析】
(24+16+24)×(24+16)÷2=1280(cm2)
39.288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面
解析:288cm2
【解析】
如图连接AC,AF,根据高相等的三角形,底扩大几倍,面积就扩大几倍,则三角形ABF的面积是三角形BEF的4倍,三角形ABC的面积是三角形ABF的3倍,又平行四边形ABCD的面积是三角形ABC的2倍,据此解答即可。
12×4×3×2=288(cm2)
答:平行四边形ABCD的面积是288cm2。
【点睛】
解题关键是三角形的底扩大到原来的几倍,高不变,面积跟着扩大到相同的倍数。
40.2200千克
【解析】
根据梯形的面积公式可计算出这块梯形地的面积,然后再用共收的油籽除以梯形的面积即可,列式解答即可得到答案.
梯形土地的
展开阅读全文