收藏 分销(赏)

人教版五年级人教版上册数学应用题解决问题专题练习.doc

上传人:快乐****生活 文档编号:4880722 上传时间:2024-10-17 格式:DOC 页数:41 大小:719.54KB
下载 相关 举报
人教版五年级人教版上册数学应用题解决问题专题练习.doc_第1页
第1页 / 共41页
人教版五年级人教版上册数学应用题解决问题专题练习.doc_第2页
第2页 / 共41页
点击查看更多>>
资源描述
人教版五年级上册数学应用题附答案 1.藏羚羊的奔跑速度大约可达到每分钟1.33千米,非洲猎豹的速度大约是藏羚羊的1.3倍,非洲猎豹的速度每分钟大约是多少千米?(得数保留两位小数) 2.五年级一班48个同学集体合影。定价是24.5元,给4张相片。另外加印是每张2.3元。全班每人一张,再送给班主任和5个科任教师每人一张,一共要付多少元? 3.明明去澳门参加科技夏令营,买了1个铅笔盒花了12澳门元,折合人民币多少元?(得数保留两位小数) 中国银行外汇牌价(单位:元) 1港元兑换人民币0.84251澳门元兑换人民币0.818 1泰铢兑换人民币0.2165 4.人民广场有一块边长25米的正方形草坪,现在围着这块草坪要修一条宽1.2米小路(如图)。请你算一算,这条小路的面积约是多少平方米?(得数保留整数) 5.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗? 6.近日,全国多地蔬菜价格上涨。大葱每千克15.6元,黄瓜每千克19.4元,大葱和黄瓜各买2千克,一共多少钱? 7.每箱装32盒水果,每盒水果2.5千克。一共有420千克水果,5个箱子够用吗? 8.自来水公司为鼓励节约用水,采取按月分段计费的方法收取水费,收费标准如下。 月用水量 10吨及以内的部分 超过10吨不超过20吨的部分 超过20吨的部分 收费标准(元/吨) 2 2.5 3 小明家上个月用水量是21.5吨,应交水费多少元? 9.王阿姨去超市购物。她买了2箱牛奶,每箱38.5元。还买了1.5kg肉,每千克32.8元。王阿姨一共花了多少钱? 10.某图书馆借阅须知如下图。王明同学在此图书馆借了一本《格林童话》,第35天时去还书。按规定王明应付逾期费多少元? 图书馆借阅须知:1.免费借阅期限:30天。 2.超过30天的,从第31天起,每册每天收取0.2元逾期费。 11.下表是中国银行2021年12月13日的外汇牌价。 1美元兑换人民币6.36元                      1欧元兑换人民币7.18元1日元兑换人民币0.056元                    1韩元兑换人民币0.0054元 (1)2.5欧元可以兑换多少人民币? (2)一个玩具标价100元人民币,相当于多少日元?(结果保留两位小数) (3)同一块手表在美国标价500美元,在韩国标价58万韩币。哪儿的标价低? 12.猎豹是世界上跑得最快的动物,速度能达到每小时110千米,比大象速度的2倍还多30千米。大象每小时能跑多少千米? 小军是这样解答的: (110+30)÷2 =140÷2 =70(千米) 答:大象每小时能跑70千米。 小军的结果正确吗?请你用学过的知识验证这个结果。 13.鸡兔同笼,鸡比兔多1只,共有腿62条。鸡和兔各有多少只? 14.两列火车从相距550km的两地同时相向开出。甲车每小时行120km,乙车每小时行100km,经过几小时两车相遇?(先写出数量关系式,再列方程解答) 15.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答) 16.请问:今年大头儿子几岁?(用方程解答) 17.聪聪和明明家距离996米,他们同时从家出发到学校,12分钟后他们在学校大门相遇,聪聪每分钟走40米,明明每分钟走多少米?(用方程解) 18.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答) 19.妈妈买了8千克苹果和4千克香蕉,共花了68.8元。已知每千克苹果5.6元,每千克香蕉多少钱?(用方程解答) 20.两列火车从相距540km的两地同时相向开出,经过2.7小时相遇。甲车每小时行105km,乙车每小时行多少千米?(先写出等量关系式,再列方程解答) 21.把一桶18.9升的桶装水分装在0.55升的塑料瓶中,需要准备多少个瓶子? 22.做一套服装,上衣用布1.9米,裤子用布1.5米。如果一匹布长150米,用这匹布最多可以做多少套这种服装? 23.张奶奶编一个“中国结”需要丝绳1.2m。现在有20m长的丝绳,可以编多少个这样的“中国结”? 24.李叔叔用17.5千克的葡萄晒出了3.5千克的葡萄干。 (1)1千克葡萄可以晒葡萄干多少千克? (2)用多少葡萄可以晒出10.5千克葡萄干? 25.王奶奶带了270元钱去购买月饼。 (1)这些钱最多可以买几个月饼? (2)买包装盒子至少需要多少钱? 26.为了鼓励节约用电,某市实行“阶梯电价”,收费标准如表所示: 月用电量(千瓦时) 100及以下 100~220 220及以上 每千瓦时电费(元) 0.42 0.60 0.85 小明家十月份共付电费70.8元,他们家十月用电多少千瓦时? 27.3台同样的小型收割机,7小时可以收割6.3吨小麦。照这样计算,一台小型收割机每小时可以收割多少吨小麦? 28.两台播种机1.8小时播种5.4公顷,那么每台播种机每小时播种多少公顷? 29.甲乙两地之间的公路长560千米,一辆客车和一辆货车同时从甲乙两地开出,相向而行,客车每小时行90千米,货车每小时行70千米,经过几小时两车相遇? 30.5月31日是“世界无烟日”,黄老师和农老师组织五、六年级的学生参加戒烟宣传活动,其中五年级参加的人数是六年级的1.2倍,且五年级比六年级多36人,五、六年级各有多少人参加?(列方程解答) 31.围棋社一共有学员48人,男生人数是女生人数的3倍。围棋社的男生女生各有多少人?(列方程解答) 32.探索梯形时,将梯形转化为学过的图形,通过比较转化前后图形的面积得到梯形的面积。若将梯形转化为学过的三角形(如图),怎么得出梯形的面积公式呢?请写出你的思考过程。 33.学校开运动会需要制作一些锦旗,如下图,这面锦旗至少需要多少平方厘米的面料?(接头处不计) 34.一块菜地的形状如图所示(单位:米)。如果这块菜地每平方米能收6棵青菜。 (1)这块菜地的面积是多少平方米? (2)这块地一共可以收多少棵青菜? 35.某公园有一块梯形草坪(如图),绿化队计划把它扩建成一个长方形。受条件限制,扩建时只把梯形草坪的上底延长,下底和高不变。 ①扩建后,面积比原来增加了多少平方米?(提示可以在图上画一画!) ②在扩建的部分铺草坪,草坪的单价是7.8元/m2,购买草坪的预算是1600元。预算的钱够不够? 36.一批同样的圆木堆成的横截面是梯形,上层是5根,下层是10根,一共堆6层,这堆圆木共多少根?如果这批圆木共重26.1吨,每根圆木重多少吨? 37.下面是一块荒地平面图. (1)这块荒地如果种花椒,大约可以种多少株?如果种桑树呢? (2)如果每株桑树上的桑叶养的蚕可卖3.5元,每株花椒树上的花椒可卖15元,你觉得种什么树比较划算?算算看,将过程写在下面. 38.如下图所示,梯形ABCD的面积是60平方米,高是8米,三角形ADE的面积是5平方米,BC=10米,求阴影部分的面积。 39.在“幸福课堂”上,志愿者组织孩子们在下面活动场地开展了一场运动会。如图,底增加2m后,面积增加20m2;高增加3m后,面积增加45m2,平行四边形活动场地的面积是多少m2? 40.如下图,同一直线上的直角梯形和长方形相距10cm。直角梯形上底2cm,下底4cm,高6cm。长方形长26cm,宽6cm。现在直角梯形按每秒2cm匀速向右平移。 (1)画出直角梯形平移6秒钟后的位置,并算一算这时它与长方形重叠部分的面积是多少平方厘米? (2)想一想,算一算,在直角梯形平移过程中,整个直角梯形与长方形完全重叠的时间维持了几秒? 41.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答) 画线段图: 42.科技馆7月份参观人数达到13.78万人,其中儿童是成人的1.6倍。7月份参观科技馆的儿童和成人各有多少万人?(列方程解答) 43.实验室有大、小两种容量瓶,它们的容积分别为、。李老师把试剂全部分装在了这两种容量瓶中,每个瓶均装满,李老师使用的大容量瓶的数量正好是小容量瓶的2倍。李老师各用了多少个大、小容量瓶?(用方程解) 44.笼子里有白兔、灰兔若干支。白兔的只数是灰兔的3倍,灰兔比白兔少8只,白兔、灰兔各几只?(列出两种不同的方程,其中一种可以只列不解) 法一:                                                   法二: 45.卡车运了多少吨?        46.同学们去参观历史博物馆,四年级和五年级共去了480人,其中五年级去的人数是四年级的3倍。四年级的参观人数是多少? 47.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答) 48.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答) 49.甲车和乙车从相距的两座城市同时出发,相向而行,经过4.2小时相遇。已知乙车每小时行驶比甲车快。甲车每小时行多少千米?(列方程解答) 50.两个完全一样的直角三角形,部分重叠在一起,如图,阴影部分的面积是多少?(单位:cm) 51.有一条长1800米的公路,在公路的一侧从头到尾每隔6米栽一棵树,一共需要准备多少棵树苗? 52.五一班45人照合影,每人1张照片,一共需要多少钱? 53.新华图书馆借阅收费标准如下: 3天内5元,超过3天就延期付费,每天收费1.5元(不满一天按一天计算),小刚在图书馆借了一本故事书,计划每天看30页,5.5天看完,小刚要付多少元? (1)我们已经学过很多解决问题的策略,比如:画线段图、画示意图、列表法等,下面我们就用列表法解决这道题吧,根据题意完成下表。 看的天数/天 1 2 3 4 5 6 所付费用/元 列出算式(只列算式,不解答):(       ) (2)如果他不想延期付费,每天看多少页? 54.受国际油价下降影响,国内汽油零售价下调。92号汽油原价6.80元/升,现在每升下调了0.34元,王叔叔加了48升92号汽油,少花了多少元? 55.妈妈买了苹果和梨各3kg,共花了27.3元。梨每千克3.8元,苹果每千克多少元?(列方程解答) 56.网上书城开展图书促销活动,购书满100元立减10元,杨老师在网上书城购买了3本书,定价分别是32.00元,27.50元,56.80元,杨老师一共要付多少钱? 57.某超市举办“买四送一”促销活动,每盒牛奶2.8元,小华要买20盒,一共需要多少钱? 58.(1)随着电动车的普及,充电问题日益突出,某大学为解决校园内充电难、乱停乱放问题,决定在校园安装10个充电区,每个充电区安装的长度都是45米,每隔0.9米安放一个充电桩(两端都安)。每个充电区要安装多少个充电桩? (2)一般电动车每小时充电用电量是0.14度电,9小时左右充满。如果每度电收费1.6元,充5小时需要多少钱? 59.某市按照以下标准收取水费:10吨及以下的部分,每吨收费1.55元,10吨至20吨的部分,每吨收费增加0.65元,20吨以上的部分,每吨收费2.5元。如果李叔叔家一月份的水费付了40元,那么李叔叔家一月份用水多少吨? 60.超市地下停车场收费标准:2小时内(含2小时)收费8元;超过2小时,每小时加收2.5元(不足1小时按1小时计算)。爸爸停车7.5小时,需要缴纳多少停车费? 61.王大爷在正方形的鱼池边上植树,每边等距离植树10棵(四个角都栽树),每两棵树之间距离是8米,鱼池的周长是多少米? 62.有一根木料长20米,先锯下2.5米长的损坏部分,然后把剩下的木料锯成一样长的木条,又锯了7次,每根短木条长多少米? 63.学校举行书法作品展,决定在长是36米的文化长廊的两侧每隔3米挂一幅书法作品(两端不挂)。两侧一共要挂多少幅书法作品? 64.在一条林荫道的两边安装路灯,每隔10米装一盏,如果道路的两端都要装,一共要装20盏,则这条林荫道全长多少米? 65.在一条全长450米的隧道顶端安装两排照明灯(隧道两头不用安装),每隔15米安装一盏,一共要安装多少盏灯? 66.沿河大道全长3500米,现在要在路的两旁安装路灯(两端也要安装),每隔50米安一盏。一共要安装多少盏路灯? 67.城东小学的同学们做早操,21个同学排成一排,每相邻的两个同学之间的距离相等,第一个人到最后一个人的距离是40米,相邻两个人间距多少米? 68.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯? 69.将一根4米长的钢筋从一端开始,按每30厘米锯一大段,再按每20厘米锯一小段,这样交替锯下去,每锯一下用30秒,锯完一下休息2分钟。全部锯完需多长时间? 70.王阿姨家2020年8月份用电量为210度,根据下面的资料计算王阿姨家8月份应缴电费多少钱? 按省物价局印发的《河北省居民生活用电试行阶梯电价实施方案》的通知要求,阶梯电价自2012年7月1日执行。 第一档:居民户月用电量在180度及以内,维持现行电价水平。其中:不满1千伏用户电价每度0.52元(居民用户电压一般为220伏)。 第二档:居民户月用电量在181度~280度,在第一档电价基础上每度提高0.05元。 第三档:居民户月用电量在281度及以上,在第一档电价基础上每度提高0.30元。 【参考答案】 1.73千米 【解析】 根据求一个数的几倍是多少,用乘法计算即用藏羚羊的奔跑速度乘1.3就是,非洲猎豹的速度,结果根据四舍五入法保留两位小数即可。 1.33×1.3≈1.73(千米) 答:非洲猎豹的速度每分钟大约是1.73千米。 【点睛】 本题考查求一个数的几倍是多少,明确用乘法是解题的关键。 2.5元 【解析】 照完后送4张相片,全班每人要一张,再送给班主任和5个科任教师每人一张,也就是说五年级一班还需要再加印张相片就可以了。求出这50张相片的价格,再加上24.5元即可。 (元) 答:一共要付139.5元。 【点睛】 此题主要考查了乘法、加法的意义的应用,要熟练掌握,解答此题的关键是要明确单价、总价、数量的关系。 3.82元 【解析】 1澳门元兑换人民币0.818,用0.818元乘上12,即可求出12澳门元折合人民币多少元。 (元) 答:折合人民币9.82元。 【点睛】 此题主要考查了小数乘整数的小数乘法,要熟练掌握,注意弄清楚题中的数量关系。 4.126平方米 【解析】 用草坪的边长加上路宽度的2倍,求出草坪和路组成的大正方形的边长,从而求出大正方形的面积。将大正方形的面积减去草坪的面积,即可求出小路的面积。 (25+1.2×2)×(25+1.2×2)-25×25 =(25+2.4)×(25+2.4)-625 =27.4×27.4-625 =750.76-625 =125.76 ≈126(平方米) 答:这条小路的面积约是126平方米。 【点睛】 本题考查了正方形的面积,正方形面积=边长×边长。 5.够 【解析】 先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。 8.8≈9 5.9≈6 9×6=54(平方米) 8分米=0.8米 0.8×0.8×100 =0.64×100 =64(平方米) 54<64,够。 答:100块够。 【点睛】 掌握用估算解决小数乘法应用题的方法是解题的关键。 6.70元 【解析】 根据单价×数量=总价,分别求出大葱和黄瓜的总价,然后相加即可。 15.6×2+19.4×2 =31.2+38.8 =70(元) 答:一共70元。 【点睛】 本题考查单价、数量和总价的关系,明确它们的关系是解题的关键。 7.不够用 【解析】 用每箱盒子数×每盒质量×箱子数,求出5个箱子能装的质量,与420千克比较即可。 32×2.5×5 =80×5 =400(千克) 400<420 答:5个箱子不够用。 【点睛】 关键是掌握小数乘法的计算方法。 8.5元 【解析】 因为21.5吨已超过20吨,所以把21.5吨分成三段:一段是按10吨以内计费,另10吨按超过10吨但不超过20吨计费,剩余1.5吨按超过20吨的部分计费,根据单价×数量=总价分别求出每部分价钱再相加即可。 10×2+10×2.5+(21.5-10-10)×3 =20+25+4.5 =49.5(元) 答:应交水费49.5元。 【点睛】 此题考查的是分段计费问题,解答此题关键是明确按照不同标准计费。 9.2元 【解析】 用牛奶的箱数乘每箱的单价,可得出买牛奶花的价钱。用每千克肉的单价,乘肉的重量,可得出买肉花的价钱。把买牛奶和买肉的价钱加起来,即可得解。 (元) 答:王阿姨一共花了126.2元。 【点睛】 此题的解题关键是掌握单价、数量和总价三者之间的关系,列出算式,求出结果。 10.1元 【解析】 用35减去30,先求出超过30天的部分,再将其乘0.2元,求出王明应付逾期费多少元。 (35-30)×0.2 =5×0.2 =1(元) 答:按规定王明应付逾期费1元。 【点睛】 本题考查了小数乘法的应用,熟练运用“数量×单价=总价”是解题的关键。 11.(1)17.95元; (2)1785.71日元; (3)在韩国标价低 【解析】 (1)根据人民币与外汇的对照表,再根据乘法意义解答即可; (2)根据人民币与外汇的对照表,再根据除法意义解答即可; (3)分别求出500美元,58万韩币相当于人民币多少元,然后再比较即可。 (1)2.5×7.18=17.95(元) 答:2.5欧元可以兑换17.95元人民币。 (2)100÷0.056≈1785.71(日元) 答:相当于1785.71日元。 (3)500×6.36=3180(元) 580000×0.0054=3132(元) 3132元<3180元 答:在韩国标价低。 【点睛】 此题考查的是人民币与外汇的换算方法,明确换算方法是解题关键。 12.错误;见详解 【解析】 根据题意,等量关系:大象的速度×2+30=猎豹的速度,据此列出方程,并求解。 解:设大象每小时能跑千米。 2+30=110 2+30-30=110-30 2=80 2÷2=80÷2 =40 答:小军的结果错误,大象每小时能跑40千米。 【点睛】 从题目中找到等量关系,按等量关系列出方程是解题的关键。 13.兔子有10只,鸡有11只 【解析】 鸡比兔多1只,设兔子有只,则鸡有只;鸡有2条腿,兔有4条腿,根据等量关系:兔子的只数×4+鸡的只数×2条,即可列方程解答。 解:设兔有x只,则鸡有(x+1)只。 (只) 答:兔子有10只,鸡有11只。 【点睛】 本题考查了列含有两个未知数的方程,找出题目中的等量关系是解此题的关键。 14.相遇时间×速度和=路程;2.5小时 【解析】 相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的数量关系:相遇时间×速度和=路程,假设经过x小时两车相遇,根据数量关系列方程,求出相遇时间即可。 数量关系式:相遇时间×速度和=路程。 解:设经过x小时两车相遇。 x×(120+100)=550 220x=550 x=550÷220 x=2.5 答:经过2.5小时两车相遇。 【点睛】 本题考查行程问题的解题方法,解题关键是掌握相遇问题的数量关系,利用相遇时间×速度和=路程,列方程计算求出相遇时间。 15.甲车63km;乙车42km 【解析】 设乙车每时行xkm,则甲车每小时行1.5xkm,根据速度和×相遇时间=总路程,列出方程求出x的值是乙车速度,乙车速度×1.5=甲车速度。 解:设乙车每时行xkm。 (1.5x+x)×5=525 2.5x×5=525 12.5x÷12.5=525÷12.5 x=42 42×1.5=63(km) 答:甲车每小时行63km,乙车每小时行42km。 【点睛】 用方程解决问题的关键是找到等量关系。 16.9岁 【解析】 设今年大头儿子x岁,则爸爸今年4x岁,根据爸爸年龄-大头儿子年龄=27岁,列出方程解答即可。 解:设今年大头儿子x岁。 4x-x=27        3x÷3=27÷3 x=9 答:今年大头儿子9岁。 【点睛】 用方程解决问题的关键是找到等量关系。 17.43米 【解析】 将明明的速度设为未知数,两人相遇时,两人的路程和等于两家的距离996米。根据这个数量关系,列方程解方程即可。 解:设明明每分钟走x米。 答:明明每分钟走43米。 【点睛】 本题考查了相遇问题,两人同时相向而行,相遇时两人的路程和等于两地的距离。 18.乙队80米;甲队100米 【解析】 设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米,再根据两人4天共铺720米,列出方程解答即可。 解:设乙队每天铺柏油路x米,则甲队每天铺柏油路1.25x米。 (米) 答:甲队每天铺柏油路100米,乙队每天铺柏油路80米。 【点睛】 本题考查列方程解决问题,解答本题的关键是掌握题中的等量关系式。 19.6元 【解析】 根据等量关系:每千克苹果的价钱×苹果的质量+每千克香蕉的价钱×香蕉的质量=一共花的钱数,据此列出方程,并求解。 解:设每千克香蕉元。 8×5.6+4=68.8 44.8+4=68.8 44.8+4-44.8=68.8-44.8 4=24 4÷4=24÷4 =6 答:每千克香蕉6元钱。 【点睛】 从题目中找到等量关系,按等量关系列出方程是解题的关键。。 20.等量关系式:路程=速度和×相遇时间;95千米 【解析】 相遇时两车所行的路程之和就是两地之间的路程,根据相遇问题的等量关系:路程=速度和×相遇时间,假设乙车每小时行驶x千米,那么两车的速度和是(105+x)千米,根据等量关系式列方程,解方程即可。 等量关系式:路程=速度和×相遇时间。 解:设乙车每小时行驶x千米。 (105+x)×2.7=540 (105+x)×2.7÷2.7=540÷2.7 105+x=200 105+x-105=200-105 x=95 答:乙车每小时行95千米。 【点睛】 本题考查行程问题的解题方法,解题关键是掌握相遇问题的等量关系,利用相遇时间×速度和=路程,列方程解答即可。 21.35个 【解析】 用桶装水的量÷塑料瓶容量,结果用进一法保留整数即可。 18.9÷0.55≈35(个) 答:需要准备35个瓶子。 【点睛】 最后无论剩下多少水,都得需要一个瓶子来装。 22.44套 【解析】 根据题意,一套服装用布的米数是(1.9+1.5)米;求这匹布最多可以做这种服装的套数,就是求150里有多少个(1.9+1.5),用除法计算,计算结果用去尾法取整数。 1.9+1.5=3.4(米) 150÷3.4≈44(套) 答:用这匹布最多可以做44套这种服装。 【点睛】 本题考查小数除法的意义及应用,关键是理解去尾法的意义,即无论结果剩几米布,只要不够再做一套,就直接舍去。 23.16个 【解析】 编一个“中国结”要用丝绳1.2m,要求用20m丝绳可以编多少个这样的“中国结”,就是求20里面有几个1.2,用除法计算。 20÷1.2=16(个)……0.8(m) 答:可以编16个这样的“中国结”。 【点睛】 此题采用了去尾法保留整数,因为小数点后面不管余下多少,都不能再编1个了,因此,不能用四舍五入法。 24.(1)0.2千克(2)52.5千克 【解析】 (1)用晒出的葡萄干的质量除以所用葡萄的质量,可以计算出1千克葡萄可以晒葡萄干多少千克; (2)用晒出的葡萄干的质量除以1千克葡萄可以晒葡萄干质量,可以计算出需要多少葡萄可以晒出10.5千克葡萄干。 (1)3.5÷17.5=0.2(千克) 答:1千克葡萄可以晒葡萄干0.2千克。 (2)10.5÷0.2=52.5(千克) 答:用52.5千克葡萄可以晒出10.5千克葡萄干。 【点睛】 本题考查小数除法的应用,找出等量关系,代入数据进行解答即可。 25.(1)31个 (2)6元 【解析】 (1)根据数量总价单价,将数据代入,即可得出答案; (2)根据第(1)小题得出的王奶奶能买的月饼数量去确定需要几个包装盒,再根据总价单价数量,将数据代入,即可得出答案。 (1)(个(元) 答:这些钱最多可以买31个月饼。 (2)(盒) (元) 答:买包装盒子至少需要6元钱。 【点睛】 本题考查学生对有余数除法运算的运用,注意根据实际情况采用”进一法“或者”去尾法“。 26.148千瓦时 【解析】 首先根据“总价=单价×数量”求出第一档的电费,即用0.42×100求出100千瓦时的电费;然后用小明家十月份共付电费减去100千瓦时的电费,求出超过100千瓦时的电费是多少元,这个电费在第二档内收取,根据“数量=总价÷单价”,用第二档的电费除以0.60元,求出第二档的用电量,再用加上第一档的100千瓦时,即是小明家十月的用电量。 (千瓦时) 答:他们家十月用电148千瓦时。 【点睛】 本题是分段计费问题,要弄清楚每段的临界点,和每段的收费标准;掌握小数四则运算法则,以及单价、总价、数量之间的关系是解题的关键。 27.3吨 【解析】 先用收割小麦的总吨数除以3台收割机,求出每台收割机7小时收割小麦的吨数,再除以7,即可求出每台收割机每小时收割小麦的吨数。 6.3÷3÷7 =2.1÷7 =0.3(吨) 答:一台收割机每小时可以收割小麦0.3吨。 【点睛】 本题考查小数除数的计算法则及应用,也可以先求出3台收割机每小时收割的吨数,再求每台收割机每小时收割小麦的吨数,列式为:6.3÷7÷3。 28.5公顷 【解析】 根据题意,此题可先求出平均每台播种机1.8小时能播种多少公顷,再求出每台每小时播种多少公顷,列出综合算式为5.4÷2÷1.8,由此进行解答即可。 5.4÷2÷1.8 =2.7÷1.8 =1.5(公顷) 答:每台播种机每小时播种1.5公顷。 【点睛】 此题属于连除应用题,解决此题也可以先求出两台播种机平均每小时能播种多少公顷,再求出每台每小时播种多少公顷。 29.5小时 【解析】 根据相遇时间=路程和÷速度和,列式解答即可。 560÷(90+70) =560÷160 =3.5(小时) 答:经过3.5小时两车相遇。 【点睛】 关键是理解速度、时间、路程之间的关系。 30.216人;180人 【解析】 五年级参加的人数是六年级的1.2倍,我们可以设六年级的人数为x人,则五年级参加的人数为1.2x人,再根据五年级比六年级多36人,列出方程求解,即可知道五六年级的人数。 解:设六年级参加的人数为x人,则五年级参加的人数为1.2x人。 1.2x-x=36 0.2x=36 0.2x÷0.2=36÷0.2 x=180 180×1.2=216(人) 答:五年级参加的人数为216人,六年级参加的人数为180人。 【点睛】 本题考查列方程解决差倍问题,解答本题的关键是根据倍数关系设1倍量为x。 31.男生36人;女生12人 【解析】 把女生人数设为未知数,男生人数=女生人数×3,等量关系式:男生人数+女生人数=学员总人数,据此解答。 解:设围棋社女生有x人,则男生有3x人。 3x+x=48 4x 解析:男生36人;女生12人 【解析】 把女生人数设为未知数,男生人数=女生人数×3,等量关系式:男生人数+女生人数=学员总人数,据此解答。 解:设围棋社女生有x人,则男生有3x人。 3x+x=48 4x=48 x=48÷4 x=12 男生:12×3=36(人) 答:围棋社的男生有36人,女生有12人。 【点睛】 根据男生人数与女生人数的数量关系设出未知数是解答题目的关键。 32.见详解 【解析】 由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。 小三角形的面积=ah÷2=ah 大三角形的 解析:见详解 【解析】 由图知:将梯形分成底a和底b、高为h的两个三角形,利用三角形面积公式求得两个三角形面积,再把这两个三角形面积相加就得梯形面积。据此解答。 小三角形的面积=ah÷2=ah 大三角形的面积=bh÷2=bh      梯形的面积=小三角形的面积+大三角形的面积 =ah+bh      =(a+b)h =(a+b)h 【点睛】 掌握三角形面积计算方法,把梯形转化为两个三角形,进而推导出梯形面积是解答此题的关键。 33.1575平方厘米 【解析】 如图,锦旗的面积=长方形的面积-空白三角形的面积,根据长方形的面积=长×宽,三角形的面积=底×高÷2,代入数据计算即可。 60×30=1800(平方厘米) 30×(60 解析:1575平方厘米 【解析】 如图,锦旗的面积=长方形的面积-空白三角形的面积,根据长方形的面积=长×宽,三角形的面积=底×高÷2,代入数据计算即可。 60×30=1800(平方厘米) 30×(60-45)÷2 =30×15÷2 =450÷2 =225(平方厘米) 1800-225=1575(平方厘米) 答:这面锦旗至少需要1575平方厘米的面料。 【点睛】 掌握组合图形面积的计算方法以及长方形、三角形面积公式的应用是解题的关键。 34.(1)64平方米 (2)384棵 【解析】 (1)菜地面积=平行四边形面积+三角形面积,平行四边形面积=底×高,三角形面积=底×高÷2; (2)菜地面积×每平方米收的青菜数量=可以收的总数量,据此列 解析:(1)64平方米 (2)384棵 【解析】 (1)菜地面积=平行四边形面积+三角形面积,平行四边形面积=底×高,三角形面积=底×高÷2; (2)菜地面积×每平方米收的青菜数量=可以收的总数量,据此列式解答。 (1)10×4+10×4.8÷2 =40+24 =64(平方米) 答:这块菜地的面积是64平方米。 (2)64×6=384(棵) 答:这块地一共可以收384棵青菜。 【点睛】 关键是掌握平行四边形和三角形面积公式。 35.①200平方米 ②够 【解析】 ①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。 ②增加的面积×每平方米价格,求出实际费用,与预算比较即可。 ①50×20- 解析:①200平方米 ②够 【解析】 ①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。 ②增加的面积×每平方米价格,求出实际费用,与预算比较即可。 ①50×20-(50+30)×20÷2 =1000-80×10 =1000-800 =200(m2) 答:面积比原来增加了200平方米。 ②200×7.8=1560(元) 1560<1600 答:预算的钱够。 【点睛】 关键是掌握并灵活运用梯形面积公式。 36.45根;0.58吨 【解析】 (5+10)×6÷2=45(根)      26.1÷45=0.58(吨) 答:这堆圆木共45根,每根圆木重0.58吨。 解析:45根;0.58吨 【解析】 (5+10)×6÷2=45(根)      26.1÷45=0.58(吨) 答:这堆圆木共45根,每根圆木重0.58吨。 37.(1) 825株花椒树, 4125株桑树. (2)种桑树比较划算. 【解析】 (1)75×40+75×30÷2=4125(m2) 4125÷5=825(株) 可以种825株花椒树,可以种4125株桑 解析:(1) 825株花椒树, 4125株桑树. (2)种桑树比较划算. 【解析】 (1)75×40+75×30÷2=4125(m2) 4125÷5=825(株) 可以种825株花椒树,可以种4125株桑树. (2)4125×3.15-14437.5(元),    825×15=12375(元),14437.5>12375,所以种桑树比较划算. 38.25m 【解析】 解析:25m 【解析】 39.150m2 【解析】 平行四边形的面积=底高,底增加2m后,面积增加20m2,可以求出平行四边形的高;高增加3m后,面积增加45m2,可以求出平行四边形的底;最后求出平行四边形的面积,据此解答。 高 解析:150m2 【解析】 平行四边形的面积=底高,底增加2m后,面积增加20m2,可以求出平行四边形的高;高增加3m后,面积增加45m2,可以求出平行四边形的底;最后求出平行四边形的面积,据此解答。 高:20÷2=10(m) 底:45÷3=15(m) 面积:15×10=150(m2) 答:平行四边形活动场地的面积是150m2。 【点睛】 熟练掌握平行四边形的面积公式是解答题目的关键。 40.(1)图见详解;6平方厘米 (2)11秒 【解析】 (1)用梯形的移动速度乘移动时间,求出直角梯形向右平移了多少厘米。据此,画出平移后的直角梯形。看图,平移后的图形和长方形的重叠部分是三角形,它的底 解析:(1)图见详解;6平方厘米 (2)11秒 【解析】 (1)用梯形的移动速度乘移动时间,求出直角梯形向右平移了多少厘米。据此,画出平移后的直角梯形。看图,平移后的图形和长方形的重叠部分是三角形,它的底是2厘米,高是6厘米,据此利用三角形的面积公式,列式计算出重叠部分的面积。 (2)用长方形的长减去梯形的下底4厘米,再将其除以梯形的移动速度,求出整个直角梯形与长方形完全重叠的时间维持了几秒。 (1)2×6=12(厘米),所以直角梯形向右平移了12厘米,平移后如下图: 重叠部分的面积:2×6÷2=6(平方厘米) 答:重叠部分的面积是6平方厘米。 (2)(26-4)÷2 =22÷2 =11(秒) 答:整个直角梯形与长方形完全重叠的时间维持了11秒。 【点睛】 本题考查了平移和三角形的面积,三角形的面积=底×高÷2。 41.爸爸8400元,妈妈5600元。 【解析】 可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。 解:画出线段图: 设小红妈妈的工 解析:爸爸8400元,妈妈5600元。 【解析】 可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。 解:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服