1、合肥48中初一数学上册期末压轴题汇编一、七年级上册数学压轴题1如图,已知AOB=120,射线OP从OA位置出发,以每秒2的速度顺时针向射线OB旋转;与此同时,射线OQ以每秒6的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒(1)当t=2时,求POQ的度数;(2)当POQ=40时,求t的值;(3)在旋转过程中,是否存在t的值,使得POQ=AOQ?若存在,求出t的值;若不存在,请说明理由答案:(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得
2、POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=解析:(1)POQ =104;(2)当POQ=40时,t的值为10或20;(3)存在,t=12或或,使得POQ=AOQ【分析】当OQ,OP第一次相遇时,t=15;当OQ刚到达OA时,t=20;当OQ,OP第二次相遇时,t=30;(1)当t=2时,得到AOP=2t=4,BOQ=6t=12,利用POQ =AOB-AOP-BOQ求出结果即可;(2)分三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即可;(3)分三种情况:当0t15时,当15t20时,当20t30时,分别列出等量关系式求解即
3、可【详解】解:当OQ,OP第一次相遇时,2t+6t=120,t=15;当OQ刚到达OA时,6t=120,t=20;当OQ,OP第二次相遇时,2t6t=120+2t,t=30;(1)当t=2时,AOP=2t=4,BOQ=6t=12,POQ =AOB-AOP-BOQ=120-4-12=104. (2)当0t15时,2t +40+6t=120, t=10;当15t20时,2t +6t=120+40, t=20;当20t30时,2t =6t-120+40, t=20(舍去); 答:当POQ=40时,t的值为10或20. (3)当0t15时,120-8t=(120-6t),120-8t=60-3t,t=
4、12;当15t20时,2t (120-6t)=(120 -6t),t=.当20t30时,2t (6t -120)=(6t -120),t=.答:存在t=12或或,使得POQ=AOQ.【分析】本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程2(阅读理解)若为数轴上三点,若点到的距离是点到的距离的2倍,我们就称点是()的优点例如,如图1,点表示的数为-1,点表示的数为2,表示1的点到点的距离是2,到点的距离是1,那么点是()的优点:又如,表示0的点到点的距离是1,到点的距离是2,那么点就不是()的优点,但点是()的优点(知识运用)如图2,为数轴上两点,点所表示的
5、数为-2,点所表示的数为4(1)数所表示的点是()的优点:(2)如图3,为数轴上两点,点所表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以3个单位每秒的速度向左运动,到达点停止当为何值时,和中恰有一个点为其余两点的优点?(请直接与出答案)答案:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段AB上,由解析:(1)x2或x10;(2)或或10【分析】(1)设所求数为x,根据优点的定义列出方程x(2)2(4x)或x(2)2(x4),解方程即可;(2)根据题意点P在线段A
6、B上,由优点的定义可分4种情况:P为(A,B)的优点;A为(B,P)的优点;P为(B,A)的优点;B为(A,P)的优点,设点P表示的数为y,根据优点的定义列出方程,进而得出t的值【详解】解:(1)设所求数为x,由题意得x(2)2(4x)或x(2)2(x4),解得:x2或x10;(2)设点P表示的数为y,分四种情况:P为(A,B)的优点由题意,得y(20)2(40y),解得y20,t(4020)3(秒);A为(B,P)的优点由题意,得40(20)2y(20),解得y10,t(4010)310(秒);P为(B,A)的优点由题意,得40y2y(20),解得y0,t(400)3(秒);B为(A,P)的
7、优点40-(-20)=2(40-x),解得:x=10t=(40-10) 3=10(秒)综上可知,当t为10秒、秒或秒时,P、A和B中恰有一个点为其余两点的优点故答案为:或或10【点睛】本题考查了数轴及一元一次方程的应用,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解3“数形结合”是重要的数学思想请你结合数轴与绝对值的知识回答下列问题:(1)一般地,数轴上表示数m和数n的两点之间的距离等于mn如果表示数a和2的两点之间的距离是3,记作a(2)3,那么a (2)利用绝对值的几何意义,探索a4a2的最小值为_,若a4a210,则a的值为_(3)当a_时,a5a1a4的
8、值最小(4)如图,已知数轴上点A表示的数为4,点B表示的数为1,C是数轴上一点,且AC8,动点P从点B出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t0)秒点M是AP的中点,点N是CP的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,求线段MN的长度答案:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小解析:(1)1或-5;(2)6,4或-6;(3)1;(4)不变,线段MN的长度为4【分析】(1)根据两
9、点间的距离公式,到2点距离是3的点有两个,即可求解;(2)当点a在点-4和点2之间时,的值最小;分两种情况,或,化简绝对值即可求得;(3)根据表示点a到5,1,4三点的距离的和,即可求解;(4)因为点A表示的数为4和AC8,所以点C表示的数为-4,点P表示的数为(1-6t),则点M表示的数为 ,点N表示的数为 ,两数相减取绝对值即可求得【详解】(1) a(2)3或a(2)-3解得a=1或-5故答案为:1或-5(2)当点a在点-4和点2之间时,的值最小数a的点位于-4与2之间a+40,a-20 =a+4-a+2=6;当时a+40,a-20= =10解得a= -6当时a+40,a-20= =10解
10、得a= 4故答案为:6,4或-6(3)根据表示一点到-5,1,4三点的距离的和所以当a=1时,式子的值最小此时的最小值是9故答案为:1(4)AC8点C表示的数为-4又点P表示的数为(1-6t)则点M表示的数为 ,点N表示的数为 线段MN的长度不发生变化,其值为4【点睛】此题考查绝对值的意义、数轴、结合数轴求两点之间的距离,掌握数形结合的思想是解决此题的关键4已知实数,在数轴上所对应的点分别为A,B,C,其中b是最小的正整数,且,满足两点之间的距离可用这两点对应的字母表示,如:点A与点B之间的距离可表示为AB(1) , , ;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左
11、运动,同时,点B以每秒2个单位长度的速度向右运动,点C以每秒5个单位长度的速度向右运动,假设运动时间为t秒,则 , ;(结果用含t的代数式表示)这种情况下,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值;(3)若A,C两点的运动和(2)中保持不变,点B 变为以每秒n()个单位长度的速度向右运动,当时,求n的值答案:(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于解析:(1)-2,1,5;(2)不变,值为1;(3)或【分析】(1)根
12、据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)用关于t的式子表示BC和AB即可求解;(3)分别求出当t=3时,A、B、C表示的数,得到AC和BC,根据AC=2BC列出方长,解之即可【详解】解:(1),b是最小的正整数,c-5=0,a+2b=0,b=1,a=-2,b=1,c=5,故答案为:-2,1,5;(2)点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,t秒后,A表示的数为-t-2,B表示的数为2t+1,C表示的数为5t+5,BC=5t+5-(2t+1)=3t+
13、4,AB=2t+1-(-t-2)=3t+3,BC-AB=3t+4-(3t+3)=1,BC-AB的值不会随着时间t的变化而改变,BC-AB=1;(3)当t=3时,点A表示-2-3=-5,点B表示1+3n,点C表示5+53=20,AC=20-(-5)=25,BC=,AC=2BC,则25=2,则25=2(19-3n),或25=2(3n-19),解得:n=或【点睛】此题考查一元一次方程的实际运用,以及数轴与绝对值,正确理解AB,BC的变化情况是关键5阅读下面的材料并解答问题:点表示数,点表示数,点表示数,且点到点的距离记为线段的长,线段的长可以用右边的数减去左边的数表示,即若是最小的正整数,且满足(1
14、)_,_(2)若将数轴折叠,使得与点重合:点与数_表示的点重合;若数轴上两点之间的距离为2018(在的左侧),且两点经折叠后重合,则两点表示的数是_、_(3)点开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为秒,试探索:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值答案:(1)1,5;(2)3;-1007,1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解解析:(1)1,5;(2)3;-1007,
15、1011;(3)不变,值为8【分析】(1)利用非负性可求解;(2)由中点坐标公式可求AC的中点表示的数是2,由折叠的性质可求解;由折叠的性质可求解;(3)利用两点距离公式分别求出AC,AB,表示出3AC-5AB,再化简即可求解【详解】解:(1)b是最小的正整数,b=1,(c-5)2+|a+b|=0c=5,a=-b=-1,故答案为:1,5;(2)将数轴折叠,使得A与C点重合:AC的中点表示的数是(-1+5)2=2,与点B重合的数=2-1+2=3;点P表示的数为2-20182=-1007,点Q表示的数为2+20182=1011,故答案为:-1007,1011;(3)3AC-5AB的值不变理由是:点
16、A表示的数为:-1-2t,点B表示的数为:1+t,点C表示的数为:5+3t,AC=5+3t-(-1-2t)=6+5t,AB=1+t-(-1-2t)=2+3t,3AC-5AB=3(6+5t)-5(2+3t)=8,所以3AC-5AB的值不变,为8【点睛】本题考查了数轴,非负性,折叠的性质,两点距离公式,灵活运用这些性质解决问题是本题的关键6已知a是最大的负整数,b是的倒数,c比a小1,且a、b、c分别是A、B、C在数轴上对应的数若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴负方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度(1)在数轴上标出点A、B、C的位置;
17、(2)运动前P、Q两点间的距离为 ;运动t秒后,点P,点Q运动的路程分别为 和 ;(3)求运动几秒后,点P与点Q相遇?(4)在数轴上找一点M,使点M到A、B、C三点的距离之和等于11,直接写出所有点M对应的数答案:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度时间解析:(1)见解析;(2)6,3t,t;(3)1.5;(4)3或-3【分析】(1)理解与整数、倒数有关概念,能够正确在数轴上找到所对应的点;(2)根据数轴上两点间的距离的求法,以及路程=速度时间进行
18、求解;(3)根据速度和时间=路程和,列出方程求解即可;(4)分当M在C点左侧,当M在线段AC上,当M在线段AB上(不含点A),当M在点B的右侧,四种情况列出方程求解【详解】解:(1)a是最大的负整数,a=-1,b是的倒数,b=5,c比a小1,c=-2,如图所示:(2)运动前P、Q两点之间的距离为5-(-1)=6;运动t秒后,点P,点Q运动的路程分别为3t和t,故答案为:6,3t,t;(3)依题意有3t+t=6,解得t=1.5故运动1.5秒后,点P与点Q相遇;(4)设点M表示的数为x,使P到A、B、C的距离和等于11,当M在C点左侧,(-1)-x+5-x+(-2)-x=11解得x=-3,即M对应
19、的数是-3 当M在线段AC上,x-(-2)-1-x+5-x=11,解得:x=-5(舍);当M在线段AB上(不含点A),x-(-1)+5-x+x-(-2)=11,解得x=3,即M对应的数是3当M在点B的右侧,x-(-1)+x-5+x-(-2)=11,解得:x=(舍),综上所述,点M表示的数是3或-3【点睛】此题主要考查了一元一次方程的应用,与数轴有关计算问题,能够正确表示数轴上两点间的距离7阅读绝对值拓展材料:表示数a在数轴上的对应点与原点的距离如:表示5在数轴上的对应点到原点的距离而,即表示5、0在数轴上对应的两点之间的距离,类似的,有:表示5、在数轴上对应的两点之间的距离一般地,点A、B在数
20、轴上分别表示有理数a、b,那么A、B之间的距离可表示为回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和的两点之间的距离是 ;(2)数轴上表示x和的两点A和B之间的距离是 ,如果A、B两点之间的距离为2,那么 (3)可以理解为数轴上表示x和 的两点之间的距离(4)可以理解为数轴上表示x的点到表示 和 这两点的距离之和可以理解为数轴上表示x的点到表示 和 这两点的距离之和(5)最小值是 ,的最小值是 答案:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计
21、算即可;(3)根据绝解析:(1)3,4;(2)|x+1|,x=1或-3;(3)-2;(4)2,3,-2,1;(5)1,3【分析】(1)根据两点之间的距离公式计算即可;(2)根据两点之间的距离公式计算即可;(3)根据绝对值的意义可得;(4)根据绝对值的意义可得;(5)分别得出和的意义,再根据数轴的性质可得【详解】解:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示1和-3的两点之间的距离是4;(2)数轴上表示x和-1的两点A和B之间的距离是|x+1|,如果|AB|=2,即|x+1|=2,x=1或-3;(3)|x+2|可以理解为数轴上表示x和-2的两点之间的距离;(4)|x-2|+|x-3|
22、可以理解为数轴上表示x的点到表示2和3这两点的距离之和,|x+2|+|x-1|可以理解为数轴上表示x的点到表示-2和1这两点的距离之和;(5)由(4)可知:当x在2和3之间时,|x-2|+|x-3|最小值是1,当x在-2和1之间时,|x+2|+|x-1|的最小值是3【点睛】本题考查的是绝对值的问题,涉及到数轴应用问题,只要理解绝对值含义和数轴上表示数值的关系(如:|x+2|表示x与-2的距离),即可求解8如图,在数轴上点表示数,点表示数,满足(1)求,的值;(2)若点与点之间的距离表示为,点与点之间的距离表示为,请在数轴上找一点,使,求点表示的数;(3)如图,一小球甲从点处以2个单位/秒的速度
23、向左运动;同时另一个小球乙从点处以3个单位/秒的速度也向左运动,设运动的时间为(秒)分别表示出(秒)时甲、乙两小球在数轴上所表示的数(用含的代数式表示);求甲、乙两小球相距两个单位时所经历的时间答案:(1)a=-2,b=6;(2)或14;(3)甲:-2-2t,乙:6-3t;6秒或10秒【分析】(1)根据非负数的性质求得a=-2,b=6;(2)分C点在线段AB上和线段AB的延长线上两种情解析:(1)a=-2,b=6;(2)或14;(3)甲:-2-2t,乙:6-3t;6秒或10秒【分析】(1)根据非负数的性质求得a=-2,b=6;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(
24、3)根据两个小球的运动情况直接列式即可;根据甲、乙两小球在数轴上表示的数列出关于t的方程,解方程即可【详解】解:(1),a+2=0,b-6=0,解得,a=-2,b=6,故答案为:a=-2,b=6;(2)设数轴上点C表示的数为cAC=2BC,|c-a|=2|c-b|,即|c+2|=2|c-6|AC=2BCBC,点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上当C点在线段AB上时,则有-2c6,得c+2=2(6-c),解得;当C点在线段AB的延长线上时,则有c6,得c+2=2(c-6),解得c=14故当AC=2BC时,c=或c=14;(3)甲球运动的路程为:2t=2t,OA=
25、2,甲球在数轴上表示的数为-2t-2;乙球运动的路程为:3t=3t,OB=6,乙球在数轴上表示的数为:6-3t;由题意得:,解得:t=10或t=6,甲、乙两小球相距两个单位时所经历的时间为6秒或10秒【点睛】本题考查了非负数的性质,一元一次方程,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键9如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c7)2=0(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左
26、运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC则AB=,AC=,BC=(用含t的代数式表示)(4)请问:3BC2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值答案:(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3BC2AB=12【分析】(1)利用|a2|(c7)20,得a20,c70,解得a,c解析:(1)-2, 1,c=7;(2)4;(3)3t+3, 5t+9, 2t+6;(4)不变,3
27、BC2AB=12【分析】(1)利用|a2|(c7)20,得a20,c70,解得a,c的值,由b是最小的正整数,可得b1;(2)先求出对称点,即可得出结果;(3)AB原来的长为3,所以ABt2t33t3,再由AC9,得ACt4t95t9,由原来BC6,可知BC4t2t62t6;(4)由 3BC2AB3(2t6)2(3t3)求解即可【详解】(1)|a2|(c7)20,a20,c70,解得a2,c7,b是最小的正整数,b1;故答案为:2;1;7(2)(72)24.5,对称点为74.52.5,2.5(2.51)4;故答案为:4(3)依题意可得ABt2t33t3,ACt4t95t9,BC2t6;故答案为
28、:3t3;5t9;2t6(4)不变 3BC2AB3(2t6)2(3t3)12【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离10如图,在数轴上,点O是原点,点A,B是数轴上的点,已知点A对应的数是a,点B对应的数是b,且a,b满足(1)在数轴上标出点A,B的位置(2)在数轴上有一个点C,满足,则点C对应的数为_(3)动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动设运动时间为t秒()当为何值时,原点O恰好为线段PQ的中点若M为AP的中点,点N在线段BQ上,且,
29、若时,请直接写出t的值答案:(1)见解析;(2);(3)时,点O恰好为线段PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对应的数为x,分两解析:(1)见解析;(2);(3)时,点O恰好为线段PQ的中点;当MN=3时 ,的值为或秒【分析】(1)由绝对值和偶次方的非负性质得出,得出,画出图形即可;(2)设点C对应的数为x,分两种情况,画出示意图,由题意列出方程,解方程即可;(3)分相遇前和相遇后两种情况,画出示意图,由题意列出方程,解方程即可;根据题意得到点Q、点N对应的数,列出绝对值方程即可求解【详解】(1),点A,B的位置如
30、图所示:(2)设点C对应的数为,由题意得:C应在A点的右侧,CA=,当点C在线段AB上时,如图所示:则CB=,CA-CB=,解得:;当点C在线段AB延长线上时,如图所示:则CB=,CA-CB=,方程无解;综上,点C对应的数为;故答案为:;(3)由题意得:,分两种情况讨论:相遇前,如图:,点O恰好为线段PQ的中点,解得:;相遇后,如图:,点O恰好为线段PQ的中点,解得:,此时,不合题意;故时,点O恰好为线段PQ的中点;当运动时间为t秒时,点P对应的数为(),点Q对应的数为(),M为AP的中点,点N在线段BQ上,且,点M对应的数为,点N对应的数为,或,答:当的值为或秒时,【点睛】本题考查了一元一次
31、方程的应用、绝对值和偶次方的非负性以及数轴,解题的关键是根据题意正确画出图形,要考虑全面,分类讨论,不要遗漏11以直线AB上一点O为端点作射线OC,使BOC40,将一个直角三角板的直角顶点放在O处,即DOE90(1)如图1,若直角三角板DOE的一边OE放在射线OA上,则COD ;(2)如图2,将直角三角板DOE绕点O顺时针转动到某个位置,若OE恰好平分AOC,则COD ;(3)将直角三角板DOE绕点O顺时针转动(OD与OB重合时为停止)的过程中,恰好有CODAOE,求此时BOD的度数答案:(1)50;(2)20;(3)15或52.5【分析】(1)利用余角的定义可求解;(2)由平角的定义及角平分
32、线的定义求解的度数,进而可求解;(3)可分两种情况:当在的内部时,当在解析:(1)50;(2)20;(3)15或52.5【分析】(1)利用余角的定义可求解;(2)由平角的定义及角平分线的定义求解的度数,进而可求解;(3)可分两种情况:当在的内部时,当在的外部时,根据角的和差可求解【详解】解:(1)由题意得,故答案为;(2),平分,故答案为;(3)当在的内部时,而,又,;当在的外部时,而,又,综上所述:的度数为或【点睛】本题主要考查余角的定义,角的和差,角平分线的定义等知识的综合运用,分类讨论是解题的关键12如果两个角的差的绝对值等于60,就称这两个角互为“伙伴角”,其中一个角叫做另一个角的“伙
33、伴角”(本题所有的角都指大于0小于180的角),例如,则和互为“伙伴角”,即是的“伙伴角”,也是的“伙伴角”(1)如图1O为直线上一点,则的“伙伴角”是_(2)如图2,O为直线上一点,将绕着点O以每秒1的速度逆时针旋转得,同时射线从射线的位置出发绕点O以每秒4的速度逆时针旋转,当射线与射线重合时旋转同时停止,若设旋转时间为t秒,求当t何值时,与互为“伙伴角”(3)如图3,射线从的位置出发绕点O顺时针以每秒6的速度旋转,旋转时间为t秒,射线平分,射线平分,射线平分问:是否存在t的值使得与互为“伙伴角”?若存在,求出t值;若不存在,请说明理由答案:(1);(2)t为35或15;(3)存在,当t=或
34、时,与互为“伙伴角”【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t把与表示出来,根据与互为“伙伴角”,列出方程解析:(1);(2)t为35或15;(3)存在,当t=或时,与互为“伙伴角”【分析】(1)按照“伙伴角”的定义写出式子,解方程即可求解;(2)通过时间t把与表示出来,根据与互为“伙伴角”,列出方程,解出时间t;(3)根据OI在AOB的内部和外部以及AOP和AOI的大小分类讨论,分别画出对应的图形,由旋转得出经过t秒旋转角的大小,角的和差,利用角平分线的定义分别表示出AOI和POI及“伙伴角”的定义求出结果即可【详解】解:(1)两个角差的绝对值为60,则此两
35、个角互为“伙伴角”,而,设其伙伴角为,则,由图知,的伙伴角是(2)绕O点,每秒1逆时针旋转得,则t秒旋转了,而从开始逆时针绕O旋转且每秒4,则t秒旋转了,此时,又与重合时旋转同时停止,(秒),又与互为伙伴角,秒或15秒答:t为35或15时,与互为伙伴角(3)若OI在AOB的内部且OI在OP左侧时,即AOPAOI,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3t此时6t160解得:t射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=POMIOM=403t根据题意可得即解得:t=或(不符合实际,舍去)此时AOI=6=AOP=AOM
36、MOP=(3)40=AOI,符合前提条件t=符合题意;若OI在AOB的内部且OI在OP右侧时,即AOPAOI,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3t此时6t160解得:t射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=IOMPOM =3t40根据题意可得即解得:t=或(不符合实际,舍去)此时AOI=6=40AOP=AOMMOP=(3)40=60AOI,不符合前提条件t=不符合题意,舍去;若OI在AOB的外部但OI运动的角度不超过180时,如下图所示 从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=3
37、t此时解得:t30射线平分,ION=MON=IOMION=()=AOB=80射线平分POM=40POI=IOMPOM =3t40根据题意可得即解得:t=(不符合前提条件,舍去)或(不符合实际,舍去)此时不存在t值满足题意;若OI运动的角度超过180且OI在OP右侧时,即AOIAOP如下图所示 此时解得: t30从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=1803t射线平分,ION=MON=IOMION=()=(360AOB)=100射线平分POM=50POI=IOMPOM =1303t根据题意可得即解得:t=(不符合,舍去)或(不符合,舍去)此时不存在t值满足题意;若OI运
38、动的角度超过180且OI在OP左侧时,即AOIAOP,如下图所示 此时解得: t30从出发绕O顺时针每秒6旋转,则t秒旋转了,平分,AOM=IOM=1803t射线平分,ION=MON=IOMION=()=(360AOB)=100射线平分POM=50POI=POMIOM =3t130根据题意可得即解得:t=或(不符合,舍去)此时AOI=3606=AOP=AOMMOP=180(3)50=AOI,符合前提条件t=符合题意;综上:当t=或时,与互为“伙伴角”【点睛】本题考查了角的计算、旋转的性质、一元一次方程的运用及角平分线性质的运用,解题的关键是利用“伙伴角”列出一元一次方程求解13已知是关于x的二
39、次二项式,A,B是数轴上两点,且A,B对应的数分别为a,b(1)求线段AB的中点C所对应的数;(2)如图,在数轴上方从点C出发引出射线CD,CE,CF,CG,且CF平分ACD,CG平分BCE,试猜想DCE与FCG之间是否存在确定的数量关系,并说明理由;(3)在(2)的条件下,已知DCE=20,ACE=30,当DCE绕着点C以2/秒的速度逆时针旋转t秒()时,ACF和BCG中的一个角的度数恰好是另一个角度数的两倍,求t的值答案:(1)7;(2);(3)或【分析】(1)根据是关于x的二次二项式可知,求出a、b的值即为A、B对应的数,即可求出C点对应的数(2)根据角平分线可知,即可求出再根据题意可知
40、,代入整理解析:(1)7;(2);(3)或【分析】(1)根据是关于x的二次二项式可知,求出a、b的值即为A、B对应的数,即可求出C点对应的数(2)根据角平分线可知,即可求出再根据题意可知,代入整理即可得到(3)根据题意可用t表示出和再分类讨论当时和当时,列出的关于t的一元一次方程,解出t即可【详解】(1)根据题意可得出 ,解得,即A、B对应的数分别为16、-2,C对应的数为(2)CF平分ACD,CG平分BCE,即,即故存在数量关系,为:(3),即 ,当时,即,解得:且小于65,当时,即,解得:且小于65综上可知或时符合题意【点睛】本题考查多项式的性质,角平分线的定义,一元一次方程的应用,结合分
41、类讨论以及数形结合的思想是解答本题的关键14如图 1,射线OC 在AOB 的内部,图中共有 3 个角:AOB 、AOC 和BOC ,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是AOB 的奇妙线(1)一个角的角平分线 这个角的奇妙线(填是或不是)(2)如图 2,若MPN = 60 ,射线 PQ 绕点 P 从 PN 位置开始,以每秒10 的速度逆时针旋转, 当QPN 首次等于180 时停止旋转,设旋转的时间为t(s) 当t 为何值时,射线 PM 是QPN 的奇妙线? 若射线 PM 同时绕点 P 以每秒6 的速度逆时针旋转,并与 PQ 同时停止旋转请求出当射线 PQ 是MPN 的奇妙线时t 的值 答案:(1)是;(2)9或12或18;或或 【分析】(1)根据奇妙线定义即可求解;(2)分3种情况,QPN=2MPN;MPN=2QPM;QPM =2MPN列出方程求解即可;分解析:(1)是;(2)9或12或18;或或 【分析】(