收藏 分销(赏)

人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc

上传人:天**** 文档编号:4880318 上传时间:2024-10-17 格式:DOC 页数:36 大小:1.12MB
下载 相关 举报
人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc_第1页
第1页 / 共36页
人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc_第2页
第2页 / 共36页
人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc_第3页
第3页 / 共36页
人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc_第4页
第4页 / 共36页
人教版中学七年级数学下册期末解答题压轴题试卷(含答案).doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、人教版中学七年级数学下册期末解答题压轴题试卷(含答案)一、解答题1已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和2如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是_;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?3某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地

2、的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由4小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?5有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(

3、参考数据:,)二、解答题6已知:ABCD点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,GFBCEH(1)如图1,求证:GFEH;(2)如图2,若GEH,FM平分AFG,EM平分GEC,试问M与之间有怎样的数量关系(用含的式子表示M)?请写出你的猜想,并加以证明7(1)如图,若B+D=E,则直线AB与CD有什么位置关系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 8如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、

4、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值9如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数10汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出

5、的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?三、解答题11已知,直角的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且(1)将直角如图1位置摆放,如果,则_;(2)将直角如图2位置摆放,N为上一点,请写出与之间的等量关系,并说明理由; (3)将直角如图3位置摆放,若,延长交直线b于点Q,点P是射线上一动点

6、,探究与的数量关系,请直接写出结论12如图1,点O在上,射线交于点C,已知m,n满足:(1)试说明/的理由;(2)如图2,平分,平分,直线、交于点E,则_;(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论13如图1,E是、之间的一点(1)判定,与之间的数量关系,并证明你的结论;(2)如图2,若、的两条平分线交于点F直接写出与之间的数量关系;(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小14已知:如图1,点,分别为,上一点(1)在,之间有一点(点不在线段上),连接,探究,之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数

7、量关系,选其中一个进行证明(2)如图2,在,之两点,连接,请选择一个图形写出,存在的数量关系(不需证明)15如图,两个形状,大小完全相同的含有30、60的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从PM

8、处开始绕点P逆时针旋转,转速2/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定值,请选择你认为对的结论加以证明四、解答题16如图所示,已知射线.点E、F在射线CB上,且满足,OE平分(1)求的度数;(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数若不存在,请说明理由.17在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则

9、_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.18如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由19如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形”

10、如图2,CAB和BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N试解答下列问题:(1)仔细观察,在图2中有 个以线段AC为边的“8字形”;(2)在图2中,若B=96,C=100,求P的度数;(3)在图2中,若设C=,B=,CAP=CAB,CDP=CDB,试问P与C、B之间存在着怎样的数量关系(用、表示P),并说明理由;(4)如图3,则A+B+C+D+E+F的度数为 20已知,点为射线上一点(1)如图1,写出、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,求的度数【参考答案】一、解答题1(1)正方形的面积为10,正方形

11、的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半

12、径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键2(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据面积列得,求

13、出,得到,由此判断不能裁出符合条件的大正方形.【详解】(1)用两个面积为的小正方形拼成一个大的正方形,大正方形的面积为400,大正方形的边长为故答案为:20cm;(2)设长方形纸片的长为,宽为,解得:,答:不能剪出长宽之比为5:4,且面积为的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.3(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】

14、(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长4

15、不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键5(1)4米 (2)见

16、解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键

17、.二、解答题6(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解析:(1)见解析;(2),证明见解析【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可【详解】(1)证明:,;(2)解:,理由如下:如图2,过点作,过点作,同理,平分,平分,由(1)知,【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键7(1)AB/CD,证

18、明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出解析:(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点

19、N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,B+FED=BED B+D=E(已知),FED=D CD/EF(内错角相等,两直线平行)AB/CD (2)过点E作EMAB,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,E1+E2+En=B+

20、F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EFAB,GHAB,EFGH,EMN+MNG=180,1+2+MNG =1802,依次类推:1+2+n-1+n=(n-1)180故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形8(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(

21、1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=

22、180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键9(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析

23、;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+AC

24、D180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键1

25、0(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得

26、;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键三、解答题11(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+N解析:(1)146;(2)AOG+NEF=90;(3)见解析【分析】(1)作CP/a,则CP/a/b,根据平行线的性质求解(2)作CP/a,由平行线的性质及等量代换得AOG+NEF

27、=ACP+PCB=90(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解【详解】解:(1)如图,作CP/a,a/b,CP/a,CP/a/b,AOG=ACP=56,BCP+CEF=180,BCP=180-CEF,ACP+BCP=90,AOG+180-CEF=90,CEF=180-90+AOG=146(2)AOG+NEF=90.理由如下:如图,作CP/a,则CP/a/b,AOG=ACP,BCP+CEF=180,NEF+CEF=180,BCP=NEF,ACP+BCP=90,AOG+NEF=90(3)如图,当点P在GF上时,作PN/a,连接PQ,OP,则PN/a/b,

28、GOP=OPN,PQF=NPQ,OPQ=OPN+NPQ=GOP+PQF,GOC=GOP+POQ=135,GOP=135-POQ,OPQ=135-POQ+PQF如图,当点P在GF延长线上时,作PN/a,连接PQ,OP,则PN/a/b,GOP=OPN,PQF=NPQ,OPN=OPQ+QPN,GOP=OPQ+PQF,135-POQ=OPQ+PQF【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解12(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线

29、,可得DON,OCF的度数,也解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得MOC=OCQ,则可得结论;(2)易得AON的度数,由两条角平分线,可得DON,OCF的度数,也易得COE的度数,由三角形外角的性质即可求得OEF的度数;(3)不变,分三种情况讨论即可【详解】(1),且,m=20,n=70MOC=90AOM=70MOC=OCQ=70MNPQ(2)AON=180AOM=160又平分,平分, OEF=OCF+COE=35+10=45故答案为:45(3)不变,理由如下:如图,当020时,CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2

30、xMNPQMOC=OCQ=2xAON=36090(1802x)=90+2x,OD平分AONDON=45+xMOE=DON=45+xCOE=MOEMOC=45+x2x=45xOEF=COE+OCF=45x+x=45当=20时,OD与OB共线,则OCQ=90,由CF平分OCQ知,OEF=45当2090时,如图CF平分OCQOCF=QCF设OCF=QCF=x则OCQ=2xMNPQNOC=180OCQ=1802xAON=90+(1802x)=2702x,OD平分AONAOE=135xCOE=90AOE=90(135x)=x45OEF=OCFCOE=x(x45)=45综上所述,EOF的度数不变【点睛】本

31、题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便13(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,解析:(1),见解析;(2);(3)60【分析】(1)作EF/AB,如图1,则EF/CD,利用平行线的性质得1BAE,2CDE,从而得到BAECDEAED;(2)如图2,由(1)的结论得AFDBAFCDF,根据角平分线的定义得到BAFBAE,CDFCDE,则AFD(BAECDE),加上(1)的结论得到AFDAED;(3)由(1)的

32、结论得AGDBAFCDG,利用折叠性质得CDG4CDF,再利用等量代换得到AGD2AEDBAE,加上90AGD1802AED,从而可计算出BAE的度数【详解】解:(1)理由如下:作,如图1,;(2)如图2,由(1)的结论得,、的两条平分线交于点F,;(3)由(1)的结论得,而射线沿翻折交于点G,【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等14(1)见解析;(2)见解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+E解析:(1)见解析;(2)见

33、解析【分析】(1)过点M作MPAB根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论【详解】解:(1)EMF=AEM+MFCAEM+EMF+MFC=360证明:过点M作MPABABCD,MPCD4=3MPAB,1=2EMF=2+3,EMF=1+4EMF=AEM+MFC;证明:过点M作MQABABCD,MQCDCFM+1=180;MQAB,AEM+2=180CFM+1+AEM+2=360EMF=1+2,AEM+EMF+MFC=360;(2)如图2第一个图:EMN+MNF-AEM-NFC=180;过点M作MPAB,过点N作NQAB,AEM=1,CFN=4,MPNQ,2+3=180,E

34、MN=1+2,MNF=3+4,EMN+MNF=1+2+3+4,AEM+CFN=1+4,EMN+MNF-AEM-NFC=1+2+3+4-1-4=2+3=180;如图2第二个图:EMN-MNF+AEM+NFC=180过点M作MPAB,过点N作NQAB,AEM+1=180,CFN=4,MPNQ,2=3,EMN=1+2,MNF=3+4,EMN-MNF=1+2-3-4,AEM+CFN=180-1+4,EMN-MNF+AEM+NFC=1+2-3-4+180-1+4=180【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键15(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(

35、1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时

36、的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含的代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP90,CPA60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时A

37、CPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点P逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时,ACDP,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上

38、,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为18秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPMCPAAPN90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可

39、以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键四、解答题16(1)40;(2)的值不变,比值为;(3)OEC=OBA=60.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=COA,从而得出答案;(2解析:(1)40;(2)的值不变,比值为;(3)OEC=OBA=60.【分析】(1)根据OB平分AOF,OE平分COF,即可得出EOB=EOF+FOB=COA,从而得出答案;(2)根据平行线的性质,即可得出OBC=BOA,OFC=FOA,再根据FOA=FOB+AOB=2AOB,即可得出OBC:OFC的值为1:2(3)设AOB=x,根据两直线平行,内错角相等表示出CBO=AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出OEC,然后利用三角形的内角和等于180列式表示出OBA,然后列出方程求解即可【详解】

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服