收藏 分销(赏)

初一下册数学实数考试试题(一)解析.doc

上传人:人****来 文档编号:4880202 上传时间:2024-10-17 格式:DOC 页数:25 大小:783.54KB 下载积分:10 金币
下载 相关 举报
初一下册数学实数考试试题(一)解析.doc_第1页
第1页 / 共25页
初一下册数学实数考试试题(一)解析.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
一、选择题 1.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=(  ) A.132 B.146 C.161 D.666 2.设记号*表示求、算术平均数的运算,即,则下列等式中对于任意实数,,都成立的是( ). ①;②; ③;④. A.①②③ B.①②④ C.①③④ D.②④ 3.已知边长为的正方形面积为8,则下列关于的说法中,错误的是(  ) A. 是无理数 B.是8的算术平方根 C. 满足不等式组 D. 的值不能在数轴表示 4.数轴上表示1,的对应点分別为A,B,点B关于点A的对称点为C,则点C所表示的数是( ) A. B. C. D. 5.若实数p,q,m,n在数轴上的对应点的位置如图所示,且满足,则绝对值最小的数是( ) A.p B.q C.m D.n 6.估算的值应在( ) A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 7.下列命题中,①81的平方根是9;②的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤,其中正确的个数有( ) A.1 B.2 C.3 D.4 8.如图,点表示的数可能是( ) A. B. C. D. 9.在求的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:……① 然后在①式的两边都乘以6,得:……② ②-①得,即,所以. 得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出的值?你的答案是 A. B. C. D. 10.数轴上有O、A、B、C四点,各点位置与各点所表示的数如图所示.若数线上有一点D,D点所表示的数为d,且|d﹣5|=|d﹣c|,则关于D点的位置,下列叙述正确的是?(  ) A.在A的左边 B.介于O、B之间 C.介于C、O之间 D.介于A、C之间 二、填空题 11.新定义一种运算,其法则为,则__________ 12.已知的小数部分是,的小数部分是,则________. 13.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____. 14.阅读下列解题过程: 计算: 解:设① 则② 由②-①得, 运用所学到的方法计算:______________. 15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是_____. 16.按下面的程序计算: 若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可以是________. 17.对于正整数n,定义其中表示n的首位数字、末位数字的平方和.例如:,.规定,.例如:,.按此定义_____. 18.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外),重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差:重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是__________. 19.如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点、,则点表示的数为______. 20.定义一种新运算,其规则是:当时,,当时,,当时,,若,则____________. 三、解答题 21.我们知道,正整数按照能否被2整除可以分成两类:正奇数和正偶数,小华受此启发,按照一个正整数被3除的余数把正整数分成了三类:如果一个正整数被3除余数为1,则这个正整数属于A类,例如1,4,7等;如果一个正整数被3除余数为2,则这个正整数属于B类,例如2,5,8等;如果一个正整数被3整除,则这个正整数属于C类,例如3,6,9等. (1)2020属于 类(填A,B或C); (2)①从A类数中任取两个数,则它们的和属于 类(填A,B或C); ②从A、B类数中任取一数,则它们的和属于 类(填A,B或C); ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们都加起来,则最后的结果属于 类(填A,B或C); (3)从A类数中任意取出m个数,从B类数中任意取出n个数,把它们都加起来,若最后的结果属于C类,则下列关于m,n的叙述中正确的是 (填序号). ①属于C类;②属于A类;③,属于同一类. 22.阅读理解: 一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数. 例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5; 413223分成三个数41,32,23,并且满足:32﹣41=23﹣32; 所以:357和413223都是等差数. (1)判断:148    等差数,514335   等差数;(用“是”或“不是”填空) (2)若一个三位数是等差数,试说明它一定能被3整除; (3)若一个三位数T是等差数,且T是24的倍数,求该等差数T. 23.数学中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的运算,记为,如, 则,则. ①根据定义,填空:_________,__________. ②若有如下运算性质:. 根据运算性质填空,填空:若,则__________;___________; ③下表中与数x对应的有且只有两个是错误的,请直接找出错误并改正. x 1.5 3 5 6 8 9 12 27 错误的式子是__________,_____________;分别改为__________,_____________. 24.先阅读材料,再解答问题: 我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试: (1)我们知道,,那么,请你猜想:59319的立方根是_______位数 (2)在自然数1到9这九个数字中,________,________,________. 猜想:59319的个位数字是9,则59319的立方根的个位数字是________. (3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________. (4)现在换一个数103823,你能按这种方法得出它的立方根吗? 25.观察下列各式,并用所得出的规律解决问题: (1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位. (2)已知,,则_____;______. (3),,,…… 小数点的变化规律是_______________________. (4)已知,,则______. 26.(阅读材料) 数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙. 你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试: 第一步:∵,,, ∴. ∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9, ∴能确定59319的立方根的个位数是9. 第三步:如果划去59319后面的三位319得到数59, 而,则,可得, 由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题) 根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2)填空:__________. 27.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则. 例如:,. (1)计算: ; ; (2)①求满足的实数的取值范围, ②求满足的所有非负实数的值; (3)若关于的方程有正整数解,求非负实数的取值范围. 28.对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,=3. (1)仿照以上方法计算:=______;=_____. (2)若,写出满足题意的x的整数值______. 如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次=1,这时候结果为1. (3)对100连续求根整数,____次之后结果为1. (4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____. 29.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试: (1)由,因为,请确定是______位数; (2)由32768的个位上的数是8,请确定的个位上的数是________,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_____________ (3)已知13824和分别是两个数的立方,仿照上面的计算过程,请计算:=____; 30.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”,一般地,把 (a≠0)记作aⓝ,读作“a的圈 n次方”. (初步探究) (1)直接写出计算结果:2③=___,()⑤=___; (2)关于除方,下列说法错误的是___ A.任何非零数的圈2次方都等于1;           B.对于任何正整数n,1ⓝ=1; C.3④=4③;   D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. (深入思考) 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? (1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式. (-3)④=___; 5⑥=___;(-)⑩=___. (2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于___; (3)算一算:÷(−)④×(−2)⑤−(−)⑥÷ 【参考答案】***试卷处理标记,请不要删除 一、选择题 1.B 解析:B 【详解】 分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出[]+[]+[]+…+[]中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; }2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6. 故[]+[]+[]+…+[]=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选B. 点睛本题考查了估算无理数的大小. 2.B 解析:B 【详解】 ①中,,所以①成立; ②中,,所以②成立; ③中,所以③不成立; ④中,,所以④成立. 故选B. 3.D 解析:D 【分析】 根据题意求得,根据无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应逐项分析判断即可 【详解】 解:根据题意,,则 A.是无理数,故该选项正确,不符合题意; B. 是8的算术平方根,故该选项正确,不符合题意; C. 即,则 满足不等式组, 故该选项正确,不符合题意; D. 的值能在数轴表示,故该选项不正确,符合题意; 故选D 【点睛】 本题考查了无理数的定义,算术平方根的定义,无理数的估算,实数与数轴一一对应,是解题的关键.无理数的定义:“无限不循环的小数是无理数”, 平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根. 4.C 解析:C 【分析】 根据数轴上两点之间的距离计算、对称的性质即可解决. 【详解】 根据对称的性质得:AC=AB 设点C表示的数为a,则 解得: 故选:C. 【点睛】 本题考查了数轴上两点之间的距离,图形对称的性质,关键是由对称的性质得到AC=AB. 5.C 解析:C 【分析】 根据,并结合数轴可知原点在q和m之间,且离m点最近,即可求解. 【详解】 解:∵ 结合数轴可得:, 即原点在q和m之间,且离m点最近, ∴绝对值最小的数是m, 故选:C. 【点睛】 本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 6.C 解析:C 【分析】 先根据19位于两个相邻平方数16和25之间,估算的取值范围进而得出结论. 【详解】 解:由于16<19<25, 所以, 因此, 故选:C. 【点睛】 本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法. 7.A 解析:A 【分析】 根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断. 【详解】 解:81的平方根是±9,所以①错误; 的平方根是±2,所以②正确; -0.003有立方根,所以③错误; −64的立方根为-4,所以④错误; 不符合命题定义,所以⑤正错误. 故选:A. 【点睛】 本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目. 8.C 解析:C 【分析】 先确定点A表示的数在3、4之间,再根据夹逼法逐项判断即得答案. 【详解】 解:点A表示的数在3、4之间, A、因为,所以,故本选项不符合题意; B、因为,所以,故本选项不符合题意; C、因为,所以,故本选项符合题意; D、因为,所以,故本选项不符合题意; 故选:C. 【点睛】 本题考查了实数与数轴以及无理数的估算,属于常见题型,正确理解题意、熟练掌握基本知识是解题的关键. 9.B 解析:B 【分析】 首先根据题意,设M=1+a+a2+a3+a4+…+a2014,求出aM的值是多少,然后求出aM-M的值,即可求出M的值,据此求出1+a+a2+a3+a4+…+a2019的值是多少即可. 【详解】 ∵M=1+a+a2+a3+a4+…+a2018①, ∴aM=a+a2+a3+a4+…+a2014+a2019②, ②-①,可得aM-M=a2019-1, 即(a-1)M=a2019-1, ∴M= . 故选B. 【点睛】 考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力. 10.B 解析:B 【分析】 借助O、A、B、C的位置以及绝对值的定义解答即可. 【详解】 解:-5<c<0,b=5,|d﹣5|=|d﹣c| ∴BD=CD, ∴D点介于O、B之间. 故答案为B. 【点睛】 本题考查了实数、绝对值和数轴等相关知识,掌握实数和数轴上的点一一对应是解答本题的关键. 二、填空题 11.【分析】 按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】 故答案为: 【点睛】 本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解 解析: 【分析】 按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得. 【详解】 故答案为: 【点睛】 本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解. 12.1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解析:1 【分析】 根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a用5+减去其整数部分即可,同理可得b的值,再将a,b的值代入所求式子即可得出结果. 【详解】 解:∵4<7<9, ∴2<<3,∴-3<-<-2, ∴7<5+<8,2<5-<3, ∴5+的整数部分是7,5-的整数部分为2, ∴a=5+-7=-2,b=5--2=3-, ∴12019=1. 故答案为:1. 【点睛】 此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键. 13.20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的 解析:20﹣. 【分析】 观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案. 【详解】 观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为 等式右边的规律为:分子为,分母为 归纳类推得:第n个等式为(n为正整数) 当时,这个等式为,即 故答案为:. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 14.. 【分析】 设S=,等号两边都乘以5可解决. 【详解】 解:设S=① 则5S=② ②-①得4S=, 所以S=. 故答案是:. 【点睛】 本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的 解析:. 【分析】 设S=,等号两边都乘以5可解决. 【详解】 解:设S=① 则5S=② ②-①得4S=, 所以S=. 故答案是:. 【点睛】 本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决. 15.﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x] 解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况: ①当时,[x]=-1,(x)=0,[x)=-1或0, ∴[x]+(x)+[x)=-2或-1; ②当时,[x]=0,(x)=0,[x)=0, ∴[x]+(x)+[x)=0; ③当时,[x]=0,(x)=1,[x)=0或1, ∴[x]+(x)+[x)=1或2; 综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2. 点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解! 16.131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 解析:131或26或5. 【解析】 试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5. 17.145 【分析】 根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解. 【详解】 解:F1(4)=16,F2(4)=F(16)=37, F3(4 解析:145 【分析】 根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解. 【详解】 解:F1(4)=16,F2(4)=F(16)=37, F3(4)=F(37)=58,F4(4)=F(58)=89, F5(4)=F(89)=145,F6(4)=F(145)=26, F7(4)=F(26)=40,F8(4)=F(40)=16, …… 通过计算发现,F1(4)=F8(4), ∴, ∴; 故答案为:145. 【点睛】 本题考查了有理数的乘方,新定义运算,能准确理解定义,多计算一些数字,进而确定循环规律是解题关键. 18.6174 【分析】 任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234, 4321- 1234= 3087, 8730-378= 8352 , 8532一2358= 617 解析:6174 【分析】 任选四个不同的数字,组成个最大的数和一个最小的数,用大数减去小数,如1234, 4321- 1234= 3087, 8730-378= 8352 , 8532一2358= 6174,6174是符合条件的4位数中唯一会产生循环的(7641-1467= 6174) 这个在数学上被称之为卡普耶卡(Kaprekar)猜想. 【详解】 任选四个不同的数字,组成一个最大的数和一个最小的数,用大数减去小数,用所得的结果的四位数重复上述的过程,最多七步必得6174,如1234, 4321-1234 =3087,8730 -378 = 8352, 8532-2358= 6174,这一现象在数学上被称之为卡普耶卡(Kaprekar)猜想, 故答案为:6174. 【点睛】 此题考查数字的规律运算,正确理解题意通过计算发现规律并运用解题是关键. 19.. 【分析】 利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数. 【详解】 ∵正方形的面积为3, ∴正方形的边长为 解析:. 【分析】 利用正方形的面积公式求出正方形的边长,再求出原点到点A的距离(即点A的绝对值),然后根据数轴上原点左边的数为负数即可求出点A表示的数. 【详解】 ∵正方形的面积为3, ∴正方形的边长为 , ∴A点距离0的距离为 ∴点A表示的数为. 【点睛】 本题考查实数与数轴,解决本题时需注意圆的半径即是点A到1的距离,而求A点表示的数时,需求出A点到原点的距离即A点的绝对值,再根据绝对值的性质和数轴上点的特征求解. 20.或﹣5 【分析】 根据新定义运算法则,分情况讨论求解即可. 【详解】 解:当x>﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x<﹣2时,则有,解得:x=﹣5,成立 解析:或﹣5 【分析】 根据新定义运算法则,分情况讨论求解即可. 【详解】 解:当x>﹣2时,则有,解得:,成立; 当x=﹣2时,则有,解得:x=3,矛盾,舍去; 当x<﹣2时,则有,解得:x=﹣5,成立, 综上,x=或﹣5, 故答案为:或﹣5. 【点睛】 本题考查新定义下的实数运算、解一元一次方程,理解新定义运算法则,运用分类讨论思想正确列出方程是解答的关键. 三、解答题 21.(1)A;(2)①B;②C;③B;(3)①③. 【分析】 (1)计算,结合计算结果即可进行判断; (2)①从A类数中任取两个数进行计算,即可求解; ②从A、B两类数中任取两个数进行计算,即可求解; ③根据题意,从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,再除以3,即可得到答案; (3)根据m,n的余数之和,举例,观察即可判断. 【详解】 解:(1)根据题意, ∵, ∴2020被3除余数为1,属于A类; 故答案为:A. (2)①从A类数中任取两个数, 如:(1+4)÷3=1…2,(4+7)÷3=3…2,…… ∴两个A类数的和被3除余数为2, 则它们的和属于B类; ②从A、B类数中任取一数,与①同理, 如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,…… ∴从A、B类数中任取一数,则它们的和属于C类; ③从A类数中任意取出8个数,从B类数中任意取出9个数,从C类数中任意取出10个数,把它们的余数相加,则 , ∴, ∴余数为2,属于B类; 故答案为:①B;②C;③B. (3)从A类数中任意取出m个数,从B类数中任意取出n个数, 余数之和为:m×1+n×2=m+2n, ∵最后的结果属于C类, ∴m+2n能被3整除,即m+2n属于C类,①正确; ②若m=1,n=1,则|mn|=0,不属于B类,②错误; ③观察可发现若m+2n属于C类,m,n必须是同一类,③正确; 综上,①③正确. 故答案为:①③. 【点睛】 本题考查了新定义的应用和有理数的除法,解题的关键是熟练掌握新定义进行解答. 22.(1)不是,是;(2)见解析;(3)432或456或840或864或888 【分析】 (1)根据等差数的定义判定即可; (2)设这个三位数是M,,根据等差数的定义可知,进而得出即可. (3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解. 【详解】 解:(1)∵ , ∴148不是等差数, ∵ , ∴514335是等差数; (2)设这个三位数是M,, ∵ , ∴ , ∵ , ∴这个等差数是3的倍数; (3)由(2)知 , ∵T是24的倍数, ∴ 是8的倍数, ∵2c是偶数, ∴只有当35a也是偶数时才有可能是8的倍数, ∴或4或6或8, 当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意; 当时,,此时若,则,若,则,(144、152是8的倍数), 当时,,此时若,则,若,则, (216、244是8的倍数), 当时,,此时若,则,若,则, 若,则,(280,288,296是8的倍数), ∵, ∴若a是偶数,则c也是偶数时b才有意义, ∴和是c是奇数均不符合题意, 当时, , 当时,, 当时,, 当时,, 当时,, 综上,T为432或456或840或864或888. 【点睛】 本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键. 23.①1,3;②0.6020;0.6990;③f(1.5),f(12);f(1.5)=3a-b+c-1,f(12)=2-b-2c. 【分析】 ①根据定义可得:f(10b)=b,即可求得结论; ②根据运算性质:f(mn)=f(m)+f(n),f()=f(n)-f(m)进行计算; ③通过9=32,27=33,可以判断f(3)是否正确,同样依据5=,假设f(5)正确,可以求得f(2)的值,即可通过f(8),f(12)作出判断. 【详解】 解:①根据定义知:f(10b)=b, ∴f(10)=1, f(103)=3. 故答案为:1,3. ②根据运算性质,得:f(4)=f(2×2)=f(2)+f(2)=2f(2)=0.3010×2=0.6020, f(5)=f()=f(10)-f(2)=1-0.3010=0.6990. 故答案为:0.6020;0.6990. ③若f(3)≠2a-b,则f(9)=2f(3)≠4a-2b, f(27)=3f(3)≠6a-3b, 从而表中有三个对应的f(x)是错误的,与题设矛盾, ∴f(3)=2a-b; 若f(5)≠a+c,则f(2)=1-f(5)≠1-a-c, ∴f(8)=3f(2)≠3-3a-3c, f(6)=f(3)+f(2)≠1+a-b-c, 表中也有三个对应的f(x)是错误的,与题设矛盾, ∴f(5)=a+c, ∴表中只有f(1.5)和f(12)的对应值是错误的,应改正为: f(1.5)=f()=f(3)-f(2)=(2a-b)-(1-a-c)=3a-b+c-1, f(12)=f()=2f(6)-f(3)=2(1+a-b-c)-(2a-b)=2-b-2c. ∵9=32,27=33, ∴f(9)=2f(3)=2(2a-b)=4a-2b,f(27)=3f(3)=3(2a-b)=6a-3b. 【点睛】 本题考查了幂的应用,新定义运算等,解题的关键是深刻理解所给出的定义或规则,将它们转化为我们所熟悉的运算. 24.(1)两;(2)125,343,729,9;(3)3,39;(4)47 【分析】 (1)根据夹逼法和立方根的定义进行解答; (2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可; (3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可; (4)利用(3)中的方法确定出个位数字和十位数字即可. 【详解】 (1)∵1000<59319<1000000, ∴59319的立方根是两位数; (2)∵125,343,729, ∴59319的个位数字是9,则59319的立方根的个位数字是9; (3)∵,且59319的立方根是两位数, ∴59319的立方根的十位数字是3, 又∵59319的立方根的个位数字是9, ∴59319的立方根是39; (4)∵1000<103823<1000000, ∴103823的立方根是两位数; ∵125,343,729, ∴103823的个位数字是3,则103823的立方根的个位数字是7; ∵,且103823的立方根是两位数, ∴103823的立方根的十位数字是4, 又∵103823的立方根的个位数字是7, ∴103823的立方根是47. 【点睛】 考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数. 25.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01 【分析】 (1)观察已知等式,得到一般性规律,写出即可; (2)利用得出的规律计算即可得到结果; (3)归纳总结得到规律,写出即可; (4)利用得出的规律计算即可得到结果. 【详解】 解:(1),,,…… ,,,…… 由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位. 故答案为:两;右;一; (2)已知,,则;; 故答案为:12.25;0.3873; (3),,,…… 小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4)∵,, ∴, ∴, ∴y=-0.01. 【点睛】 此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键. 26.(1)48;(2)28 【分析】 (1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. (2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可. 【详解】 解:(1)第一步:,,, , 能确定110592的立方根是个两位数. 第二步:的个位数是2,, 能确定110592的立方根的个位数是8. 第三步:如果划去110592后面的三位592得到数110, 而,则,可得, 由此能确定110592的立方根的十位数是4,因此110592的立方根是48; (2)第一步:,,, , 能确定21952的立方根是个两位数. 第二步:的个位数是2,, 能确定21952的立方根的个位数是8. 第三步:如果划去21952后面的三位952得到数21, 而,则,可得, 由此能确定21952的立方根的十位数是2,因此21952的立方根是28. 即, 故答案为:28. 【点睛】 本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度. 27.(1)2,3 (2)①② (3) 【分析】 (1)根据新定义的运算规则进行计算即可; (2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值; (3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围. 【详解】 (1)2;3; (2)①∵ ∴ 解得; ②∵ ∴ 解得 ∵为整数 ∴ 故所有非负实数的值有; (3) ∵方程的解为正整数 ∴或2 ①当时,是方程的增根,舍去 ②当时,. 【点睛】 本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键. 28.(1)2;5;(2)1,2,3;(3)3;(4)255 【分析】 (1)先估算和的大小,再由并新定义可得结果; (2)根据定义可知x<4,可得满足题意的x的整数值; (3)根据定义对120进行连续求根整数,可得3次之后结果为1; (4)最大的正整数是255,根据操作过程分别求出255和256进行几次操作,即可得出答案. 【详解】 解:(1)∵22=4, 62=36,52=25, ∴5<<6, ∴[]=[2]=2,[]=5, 故答案为2,5; (2)∵12=1,22=4,且[]=1, ∴x=1,2,3, 故答案为1,2,3; (3)第一次:[]=10, 第二次:[]=3, 第三次:[]=1, 故答案为3; (4)最大的正整数是255, 理由是:∵[]=15,[]=3,[]=1, ∴对255只需进行3次操作后变为1, ∵[]=16,[]=4,[]=2,[]=1, ∴对256只需进行4次操作后变为1, ∴只需进行3次操作后变为1的所有正整数中,最大的是255, 故答案为255. 【点睛】 本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力,同时也考查了一个数的平方数的计算能力. 29.(1)两;(2)2,3;(3)24,-48. 【分析】 (1)根据题中所给的分析方法先求出这32768的立方根都是两位数; (2)继续分析求出个位数和十位数即可; (3)利用(1)(2)中材料中的过程进行分析可得结论. 【详解】 解:(1)由103=1000,1003=1000000, ∵1000<32768<100000, ∴10<<100, ∴是两位数; 故答案为:两; (2)∵只有个位数是2的立方数是个位数是8, ∴的个位上的数是2 划去32768后面的三位数768得到32, 因为33=27,43=64, ∵27<32<64, ∴30<<40. ∴的十位上的数是3. 故答案为:2,3; (3)由103=1000,1003=1000000, 1000<13824<1000000, ∴10<<100, ∴是两
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服