资源描述
数学勾股定理的专项培优易错试卷练习题附解析
一、选择题
1.如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△PAB=3S△PCD,则动点P到点A,B两点距离之和PA+PB的最小值为( )
A.5 B. C. D.
2.如图,将一个等腰直角三角形按图示方式依次翻折,若,则下列说法正确的是( )
①平分;②长为;③是等腰三角形;④的周长等于的长.
A.①②③ B.②④ C.②③④ D.③④
3.如图,在中,平分,平分,且交于,若,则的值为
A.36 B.9 C.6 D.18
4.如图,中,,,.设长是,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③是13的算术平方根;④.其中所有正确说法的序号是( )
A.①② B.①③
C.①②③ D.②③④
5.如图,△ABC中,AB=10,BC=12,AC=,则△ABC的面积是( ).
A.36 B. C.60 D.
6.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( )
A.AB的中点 B.BC的中点
C.AC的中点 D.的平分线与AB的交点
7.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )
A.6 B. C.2π D.12
8.以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5 B.1,1,
C.8,12,13 D.、、
9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )
A.1 B.2021 C.2020 D.2019
10.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是( )
A. B. C.4 D.7
二、填空题
11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.
12.如图,∠MON=90°,△ABC的顶点A、B分别在OM、ON上,当A点从O点出发沿着OM向右运动时,同时点B在ON上运动,连接OC.若AC=4,BC=3,AB=5,则OC的长度的最大值是________.
13.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)
①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).
14.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为 ,,,若,则的值是__________.
15.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.
16.在△ABC 中,若,则最长边上的高为_____.
17.若为直角三角形,,,,点在斜边上,且,则的长为__________.
18.在Rt△ABC中,直角边的长分别为a,b,斜边长c,且a+b=3,c=5,则ab的值为______.
19.如图,,点分别在上,且,点分别在上运动,则的最小值为______.
20.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.
三、解答题
21.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.
(1)当秒时,求的长;
(2)求出发时间为几秒时,是等腰三角形?
(3)若沿方向运动,则当点在边上运动时,求能使成为等腰三角形的运动时间.
22.如图所示,已知中,,,,、是的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为.
(1)则____________;
(2)当为何值时,点在边的垂直平分线上?此时_________?
(3)当点在边上运动时,直接写出使成为等腰三角形的运动时间.
23.(1)如图1,在中,,,平分.
求证:.
小明为解决上面的问题作了如下思考:
作关于直线的对称图形,∵平分,∴点落在上,且,.因此,要证的问题转化为只要证出即可.
请根据小明的思考,写出该问题完整的证明过程.
(2)参照(1)中小明的思考方法,解答下列问题:
如图3,在四边形中,平分,,,,求的长.
24.已知:如图,在中,,以点为圆心,的长为半径画弧,交线段于点,以点为圆心,长为半径画弧,交线段与点.
(1)根据题意用尺规作图补全图形(保留作图痕迹);
(2)设
①线段的长度是方程的一个根吗?并说明理由.
②若线段,求的值.
25.如图,△ABC中,,AB=AC,P是线段BC上一点,且.作点B关于直线AP的对称点D, 连结BD,CD,AD.
(1)补全图形.
(2)设∠BAP的大小为α.求∠ADC的大小(用含α的代数式表示).
(3)延长CD与AP交于点E,直接用等式表示线段BD与DE之间的数量关系.
26.如图,在平面直角坐标系中,点是坐标原点,,,均为等边三角形,在轴正半轴上,点,点,点在内部,点在的外部,,,与交于点,连接,,,.
(1)求点的坐标;
(2)判断与的数量关系,并说明理由;
(3)直接写出的周长.
27.已知组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
28.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB对称,点D在线段AB上.
(1)如图1,若m=8,求AB的长;
(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=DE;
(3)如图3,若m=4,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.
29.已知是等边三角形,点D是BC边上一动点,连结AD
如图1,若,,求AD的长;
如图2,以AD为边作,分别交AB,AC于点E,F.
小明通过观察、实验,提出猜想:在点D运动的过程中,始终有,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD是的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法2:利用AD是的角平分线,构造的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明一种方法即可
小聪在小明的基础上继续进行思考,发现:四边形AEDF的面积与AD长存在很好的关系若用S表示四边形AEDF的面积,x表示AD的长,请你直接写出S与x之间的关系式.
30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).
(1)AE= (用含t的代数式表示),∠BCD的大小是 度;
(2)点E在边AC上运动时,求证:△ADE≌△CDF;
(3)点E在边AC上运动时,求∠EDF的度数;
(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
首先由,得知动点P在与AB平行且与AB的距离为3的直线上,作点A关于直线的对称点E,连接AE、BE,则BE的长就是所求的最短距离,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
【详解】
解:∵, 设点P到CD的距离为h,则点P到AB的距离为(4-h),
则,解得:h=1,∴点P到CD的距离1,到AB的距离为3,
∴如下图所示,动点P在与AB平行且与AB的距离为3的直线上,作点A关于直线的对称点E,连接AE、BE,且两点之间线段最短,
∴PA+PB的最小值即为BE的长度,AE=6,AB=3,∠BAE=90°,
根据勾股定理:,
故选:B.
【点睛】
本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P所在的位置是解题的关键.
2.B
解析:B
【分析】
根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC和DE的关系.
【详解】
解:根据折叠的性质知,△,且都是等腰直角三角形,
∴,,
∴
不能平分①错误;
,,
,
,,
②正确;
,
,
,
,
不是等腰三角形,
故③错误;
的周长,
故④正确.
故选:.
【点睛】
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.
3.A
解析:A
【分析】
先根据角平分线的定义、角的和差可得,再根据平行线的性质、等量代换可得,然后根据等腰三角形的定义可得,从而可得,最后在中,利用勾股定理即可得.
【详解】
平分,平分,
,
,
,
,
,
,
,
在中,由勾股定理得:,
故选:A.
【点睛】
本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.
4.C
解析:C
【分析】
根据勾股定理即可求出答案.
【详解】
解:∵∠ACB=90°,
∴在RtABC中,m=AB==,
故①②③正确,
∵m2=13,9<13<16,
∴3<m<4,
故④错误,
故选:C.
【点睛】
本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.
5.A
解析:A
【分析】
作于点D,设,得,,结合题意,经解方程计算得BD,再通过勾股定理计算得AD,即可完成求解.
【详解】
如图,作于点D
设,则
∴,
∴
∵AB=10,AC=
∴
∴
∴
∴△ABC的面积
故选:A.
【点睛】
本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.
6.A
解析:A
【分析】
先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.
【详解】
解:如图
∵AB2=2890000,BC2=640000,AC2=2250000
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴活动中心P应在斜边AB的中点.
故选:A.
【点睛】
本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.
7.A
解析:A
【分析】
分别求出以AB、AC、BC为直径的半圆及△ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.
【详解】
解:如图所示:
∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,
∴以AB为直径的半圆的面积S1=2π(cm2);
以AC为直径的半圆的面积S2=π(cm2);
以BC为直径的半圆的面积S3=π(cm2);
S△ABC=6(cm2);
∴S阴影=S1+S2+S△ABC-S3=6(cm2);
故选A.
【点睛】
本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
8.C
解析:C
【分析】
根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.
【详解】
A. 32+42=52,能构成直角三角形,故不符合题意;
B. 12+12=()2,能构成直角三角形,故不符合题意;
C. 82+122≠132,不能构成直角三角形,故符合题意;
D.()2+()2=()2,能构成直角三角形,故不符合题意,
故选C.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
9.B
解析:B
【分析】
根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.
【详解】
解:由题意得,正方形A的面积为1,
由勾股定理得,正方形B的面积+正方形C的面积=1,
∴“生长”了1次后形成的图形中所有的正方形的面积和为2,
同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,
∴“生长”了3次后形成的图形中所有的正方形的面积和为4,
……
∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,
故选:B.
【点睛】
本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
10.A
解析:A
【解析】
试题解析:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE,
,
∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得BC=,
在Rt△ABC中,根据勾股定理,得AC=.
故选A.
考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.
二、填空题
11.5
【详解】
解:如图,延长AE交BC于点F,
∵点E是CD的中点,
∴DE=CE,,
∵AB⊥BC,AB⊥AD,
∴AD∥BC,
∴∠ADE=∠BCE且DE=CE,∠AED=∠CEF,
∴△AED≌△FEC(ASA),
∴AD=FC=5,AE=EF,
∴BF=BC-FC=5,
∴在Rt△ABF中,,
故答案为:6.5.
12.5
【解析】
试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.
考点:勾股定理的逆定理,
13.①③
【分析】
①由已知条件证明DAB≌EAC即可;
②由①可得ABD=ACE<45°,DCB>45°;
③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC =45°+45°=90°可判断③;
④由BE2=BC2-EC2=2AB2-(CD2﹣DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2可判断④.
【详解】
解:∵DAE=BAC=90°,
∴DAB=EAC,
∵AD=AE,AB=AC,
∴AED=ADE=ABC=ACB=45°,
∵在DAB和EAC中,
,
∴DAB≌EAC,
∴BD=CE,ABD=ECA,故①正确;
由①可得ABD=ACE<45°,DCB>45°故②错误;
∵ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC =45°+45°=90°,
∴CEB=90°,即CE⊥BD,故③正确;
∴BE2=BC2-EC2=2AB2-(CD2﹣DE2)=2AB2-CD2+2AD2=2(AD2+AB2)-CD2.
∴BE2=2(AD2+AB2)-CD2,故④错误.
故答案为:①③.
【点睛】
本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.
14.48
【分析】
用a和b表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出的面积.
【详解】
解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a,较短的长度为b,即图中的,,
则,,,
∵,
∴
,
∴.
故答案是:48.
【点睛】
本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.
15.(0,21009)
【解析】
【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.
【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,
∴OA1=,OA2=()2,…,OA2018=()2018,
∵A1、A2、…,每8个一循环,
∵2018=252×8+2
∴点A2018的在y轴正半轴上,OA2018==21009,
故答案为(0,21009).
【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
16.
【分析】
解方程可求得a=4,b=3,故三角形ABC是直角三角形,在利用三角形的面积转化得到斜边上的高.
【详解】
解:∵,
将两个方程相加得:,
∵a>0,
∴a=4
代入得:,
∵b>0,
∴b=3,
∵a=3,b=4,c=5满足勾股定理逆定理,
∴△ABC是直角三角形,
如下图,∠ACB=90°,CD⊥AB,
,
即:,
解得:CD=,
故答案为:.
【点睛】
本题考查求解三角形的高,解题关键是利用三角形的面积进行转化,在同一个三角形中,一个底乘对应高等于另一个底乘对应高.
17.5
【分析】
在直角中,依据勾股定理求出的长度,再算出,过点B作于点E,通过等面积法求出BE,得到两个直角三角形,分别运用勾股定理算出,两者相加即为的长.
【详解】
解:如图,过点B作于点E,则,,
∵直角中,,,,
∴,
又∵,
∴,,
∴,
∵,
∴,,
∴.
故答案为:5.
【点睛】
本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.
18.10
【分析】
先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=3,c=5代入即可求出ab的值.
【详解】
解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,
∴a2+b2=c2,
∴(a+b)2﹣2ab=c2,
∵a+b=3,c=5,
∴(3)2﹣2ab=52,
∴ab=10.
故答案为10.
【点睛】
本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.
19.10
【分析】
首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.
【详解】
作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N′==10.
故答案为10.
【点睛】
本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.
20.
【解析】
试题分析:根据等腰三角形的性质和勾股定理可知BC边上的高为8,然后根据三角形的面积法可得,解得BD=.
三、解答题
21.(1);(2);(3)5.5秒或6秒或6.6秒
【分析】
(1)根据点、的运动速度求出,再求出和,用勾股定理求得即可;
(2)由题意得出,即,解方程即可;
(3)当点在边上运动时,能使成为等腰三角形的运动时间有三种情况:
①当时(图,则,可证明,则,则,从而求得;
②当时(图,则,易求得;
③当时(图,过点作于点,则求出,,即可得出.
【详解】
(1)解:(1),
,
,
;
(2)解:根据题意得:,
即,
解得:;
即出发时间为秒时,是等腰三角形;
(3)解:分三种情况:
①当时,如图1所示:
则,
,
,
,
,
,
,
秒.
②当时,如图2所示:
则
秒.
③当时,如图3所示:
过点作于点,
则
,
,
,
秒.
由上可知,当为5.5秒或6秒或6.6秒时,
为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
22.(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s
【分析】
(1)由勾股定理即可得出结论;
(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;
(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.
【详解】
(1)在Rt△ABC中,BC(cm).
故答案为:12;
(2)如图,点P在边AC的垂直平分线上时,连接PC,
∴PC= PA=t,PB=16-t.
在Rt△BPC中,,即,
解得:t=.
∵Q从B到C所需的时间为12÷2=6(s),>6,
∴此时,点Q在边AC上,CQ=(cm);
(3)分三种情况讨论:
①当CQ=BQ时,如图1所示,
则∠C=∠CBQ.
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10,
∴BC+CQ=22,
∴t=22÷2=11(s).
②当CQ=BC时,如图2所示,
则BC+CQ=24,
∴t=24÷2=12(s).
③当BC=BQ时,如图3所示,
过B点作BE⊥AC于点E,
则BE,
∴CE=7.2.
∵BC=BQ,BE⊥CQ,
∴CQ=2CE=14.4,
∴BC+CQ=26.4,
∴t=26.4÷2=13.2(s).
综上所述:当t为11s或12s或13.2s时,△BCQ为等腰三角形.
【点睛】
本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.
23.(1)证明见解析;(2)21.
【分析】
(1)只需要证明,再根据等角对等边即可证明,再结合小明的分析即可证明;
(2)作△ADC关于AC的对称图形,过点C作CE⊥AB于点E,则=BE.设=BE=x.在Rt△CEB和Rt△CEA中,根据勾股定理构建方程即可解决问题.
【详解】
解:(1)证明:如下图,作△ADC关于CD的对称图形△A′DC,
∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,
∵CD平分∠ACB,
∴A′点落在CB上
∵∠ACB=90°,
∴∠B=90°-∠A=30°,
∴∠A′DB=∠CA′D-∠B=30°,即∠A′DB=∠B,
∴A′D=A′B,
∴CA+AD=CA′+A′D=CA′+A′B=CB.
(2)如图,作△ADC关于AC的对称图形△AD′C.
∴D′A=DA=9,D′C=DC=10,
∵AC平分∠BAD,
∴D′点落在AB上,
∵BC=10,
∴D′C=BC,
过点C作CE⊥AB于点E,则D′E=BE,
设D′E=BE=x,
在Rt△CEB中,CE2=CB2-BE2=102-x2,
在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.
∴102-x2=172-(9+x)2,
解得:x=6,
∴AB=AD′+D′E+EB=9+6+6=21.
【点睛】
本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.
24.(1)详见解析;(2)①线段的长度是方程的一个根,理由详见解析;②
【分析】
(1)根据题意,利用尺规作图画出图形即可;
(2)①根据勾股定理求出AD,然后把AD的值代入方程,即可得到答案;
②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
【详解】
(1)解:作图,如图所示:
(2)解:①线段的长度是方程的一个根.
理由如下:依题意得,
在中,
;
线段的长度是方程的一个根
②依题意得:
在中,
【点睛】
本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
25.(1)见解析;(2)∠ADC=;(3)
【分析】
(1)根据题意画出图形即可;
(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可;
(3)画出图形,结合(2)的结论证明△BED为等腰直角三角形,从而得出结论.
【详解】
解:(1)如图所示;
(2)∵点B与点D关于直线AP对称,∠BAP=α,
∴∠PAD=α,AB=AD,
∵,
∴,
又∵AB=AC,
∴AD=AC,
∴∠ADC==;
(3)如图,连接BE,
由(2)知:∠ADC=,
∵∠ADC=∠AED+∠EAD,且∠EAD=α,
∴∠AED=45°,
∵点B与点D关于直线AP对称,即AP垂直平分BD,
∴∠AED=∠AEB=45°,BE=DE,
∴∠BED=90°,
∴△BED是等腰直角三角形,
∴,
∴.
【点睛】
本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.
26.(1),;(2);(3).
【分析】
(1)由等边三角形的性质得出,,由勾股定理得出,即可得出点的坐标;
(2)由等边三角形的性质得出,,,证出,由证明,即可得出;
(3)证出,求出,由全等三角形的性质得出,证出,由等边三角形的性质得,即可得出答案.
【详解】
解:(1)是等边三角形,点,点,
,,,
点的坐标为,;
(2);理由如下:
,均为等边三角形,
,,,
,
在和中,,
,
;
(3),
,
,
,
是等边三角形,,
,
,
,
,
,
,
,
,为等边三角形,
为斜边的中点,
,
的周长.
【点睛】
本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
27.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.
【分析】
(1)根据题意可知,这n组正整数符合规律m2-1,2m,m2+1(m≥2,且m为整数).分三种情况:m2-1=71;2m=71;m2+1=71;进行讨论即可求解;
(2)由于(m2-1) 2+(2m) 2=m4+2m2+1=(m2+1) 2,根据勾股定理的逆定理即可求解.
【详解】
(1)不存在一组数,既符合上述规律,且其中一个数为71.
理由如下:
根据题意可知,这组正整数符合规律,,(,且为整数).
若,则,此时不符合题意;
若,则,此时不符合题意;
若,则,此时不符合题意,
所以不存在一组数,既符合上述规律,且其中一个数为71.
(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.
理由如下:
对于一组数:,,(,且为整数).
因为
所以若一个三角形三边长分别为,,(,且为整数),则该三角形为直角三角形.
因为当,且为整数时,表示任意一个大于2的偶数,,均为正整数,
所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.
【点睛】
考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.注意分类思想的应用
28.(1)AB=4;(2)见解析;(3)CD+CF的最小值为4.
【分析】
(1)根据勾股定理可求AB的长;
(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示
DE,CE的长,即可证CE=DE;
(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC=4,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.
【详解】
(1)∵点A(0,4),B(m,0),且m=8,
∴AO=4,BO=8,
在Rt△ABO中,AB=
(2)如图,过点D作DF⊥AO,
∵DE=DO,DF⊥AO,
∴EF=FO,
∵m=4,
∴AO=BO=4,
∴∠ABO=∠OAB=45°,
∵点C,O关于直线AB对称,
∴∠CAB=∠CBA=45°,AO=AC=OB=BC=4,
∴∠CAO=∠CBO=90°,
∵DF⊥AO,∠BAO=45°,
∴∠DAF=∠ADF=45°,
∴AF=DF,
设OF=EF=x,AE=4﹣2x,
∴AF=DF=4﹣x,
在Rt△DEF中,DE=
在Rt△ACE中,CE=
∴CE=DE,
(3)如图,过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,
∵m=4,
∴OB=4,
∴tan∠ABO=,
∴∠ABO=30°
∵点C,O关于直线AB对称,
∴AC=AO=4,BO=BC=4,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,
∴∠CAF=120°,∠CBO=60°
∵BM⊥OB,∠ABO=30°,
∴∠ABM=120°,
∴∠CAF=∠ABM,且DB=AF,BM=AO=AC=4,
∴△ACF≌△BMD(SAS)
∴CF=DM,
∵CF+CD=CD+DM,
∴当点D在CM上时,CF+CD的值最小,
即CF+CD的最小值为CM的长,
∵∠CBO=60°,BM⊥OB,
∴∠CBN=30°,且BM⊥OB,BC=4,
∴CN=2,BN=CN=6,
∴MN=BM+BN=4+6=10,
在Rt△CMN中,CM=,
∴CD+CF的最小值为.
【点睛】
本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
29.(1);(2)证明见解析.
【解析】
【分析】
由等边三角形的性质可求,,,由勾股定理可求AG,AD的长;
想法1:过点A作于点M,作,交DE的延长线于点H,由角平分线的性质可得,由“AAS”可证≌,可得;
想法2:延长DE至N,使,由“SAS”可证≌,可得,,由四边形内角和为,可得,可得;
由想法1可得.
【详解】
如图,过点A作于点G,
,,
,
是等边三角形,,
,,
,
在中,,
在中,
想法1:如图,过点A作于点M,作,交DE的延长线于点H,
平分,,
,
,
,
,
,且,
,且,,
≌
,
想法2:如图,延长DE至N,使,
,,,
≌
,,
,
,
,
,且,
,
,
,
如图,
由中想法1可得≌,
,
,
,,
,,
,
,,
≌
,
.
【点睛】
本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造全等三角形是本题的关键.
30.(1)t,45;(2)详见解析;(3)90°;(4)t的值为﹣1或+1,BE=.
【解析】
【分析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)根据SAS即可证明△ADE≌△CDF;
(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;
(4)分两种情形分别求解即可解决问题.
【详解】
(1)由题意:AE=t.
∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°.
故答案为t,45.
(2)∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°.
∵AE=CF,∴△ADE≌△CDF(SAS).
(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°.
(4)①当点E在AC边上时,如图1.在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC.
∵CE=CD=1,∴AE=AC﹣CE1,∴t1.
∵BC=,∴BE===;
②当点E在AC的延长线上时,如图2,AE=AC+EC1,∴t1.
∵BC=,∴BE===;
综上所述:满足条件的t的值为1或1,BE=.
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
展开阅读全文