收藏 分销(赏)

七年级下册数学期末压轴题测试卷.doc

上传人:天**** 文档编号:4879473 上传时间:2024-10-17 格式:DOC 页数:43 大小:1.75MB
下载 相关 举报
七年级下册数学期末压轴题测试卷.doc_第1页
第1页 / 共43页
七年级下册数学期末压轴题测试卷.doc_第2页
第2页 / 共43页
七年级下册数学期末压轴题测试卷.doc_第3页
第3页 / 共43页
七年级下册数学期末压轴题测试卷.doc_第4页
第4页 / 共43页
七年级下册数学期末压轴题测试卷.doc_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、一、解答题1如图,在平面直角坐标系中,已知,满足平移线段得到线段,使点与点对应,点与点对应,连接,(1)求,的值,并直接写出点的坐标;(2)点在射线(不与点,重合)上,连接,若三角形的面积是三角形的面积的2倍,求点的坐标;设,求,满足的关系式2已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线PHAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点)

2、:如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M,A与C的数量关系3已知:直线ABCD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN(1)如图1,延长HN至G,BMH和GND的角平分线相交于点E求证:2MENMHN180;(2)如图2,BMH和HND的角平分线相交于点E请直接写出MEN与MHN的数量关系: ;作MP平分AMH,NQMP交ME的延长线于点Q,若H140,求ENQ的度数(可直接运用中的结论)4如图,直线,点是、之间(不在直线,上)的一个动点(1)如图1,若与都是锐角,请写出与,之间

3、的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数5已知:如图(1)直线AB、CD被直线MN所截,12(1)求证:AB/CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分BPE,QF平分EQD,则PEQ和PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH/EQ交CD于点H,连接PQ,若PQ平分EPH,QPF:EQF1:5,求PHQ的度数6如图,

4、将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数7我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:例如:可分解成,或,因为,所以是的最佳分解,所以(1)填空: ; ;(2)一个两位正整数(,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有的两位正整数;并求的最大值;(3)填空: ; ;8据说,我国著名数学

5、家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由,因为,请确定是_位数;(2)由32768的个位上的数是8,请确定的个位上的数是_,划去32768后面的三位数768得到32,因为,请确定的十位上的数是_;(3)已知和分别是两个数的立方,仿照上面的计算过程,请计算:;9阅读材料:求1+2+22+23+24+22017的值解:设S=1+2+22+23+24+22017,将等式两边同时乘以2得:2

6、S=2+22+23+24+22017+22018将下式减去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+22017=22018-1请你仿照此法计算:(1)1+2+22+23+29=_;(2)1+5+52+53+54+5n(其中n为正整数);(3)1+22+322+423+928+102910定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和

7、与的商为,所以根据以上定义,完成下列问题:(1)填空:下列两位数:,中,“奇异数”有 .计算: . .(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值11新定义:对非负数x“四舍五入”到个位的值记为,即当n为非负数时,若,则=n.例如=0,=1,=2,=4,试回答下列问题:(1)填空:=_;如果=2,实数x的取值范围是_.(2)若关于x的不等式组的整数解恰有4个,求的值;(3)求满足的所有非负实数x的值.12我们知道,任意一个正整数n都可以进行这样的分解:(p,q是正整数,且),在n的所有

8、这种分解中,如果p,q两因数之差的绝对值最小,我们就称pq是n的完美分解并规定:例如18可以分解成118,29或36,因为1819263,所以36是18的完美分解,所以F(18)(1)F(13) ,F(24) ;(2)如果一个两位正整数t,其个位数字是a,十位数字为,交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数为“和谐数”,求所有“和谐数”;(3)在(2)所得“和谐数”中,求F(t)的最大值13已知、两点的坐标分别为,将线段水平向右平移到,连接,得四边形,且(1)点的坐标为_,点D的坐标为_;(2)如图1,轴于,上有一动点,连接、,求最小时点位置及

9、其坐标,并说明理由;(3)如图2,为轴上一点,若平分,且于,求与之间的数量关系14已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由15已知,在平面直角坐标系中,ABx轴于点B,点A满足,平移线段AB使点A与原点重合,点B的对应点为点C(1)则a,b,点C坐标为;(2

10、)如图1,点D(m,n)在线段BC上,求m,n满足的关系式;(3)如图2,E是线段OB上一动点,以OB为边作BOGAOB,交BC于点G,连CE交OG于点F,当点E在线段OB上运动过程中,的值是否会发生变化?若变化请说明理由,若不变,请求出其值 16某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能

11、否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由17如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且OAB的面积为6(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及BPQ的面积18如图,已知,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求

12、点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.19(阅读感悟)一些关于方程组的问题,若求的结果不是每一个未知数的值,而是关于未知数的式子的值,如以下问题:已知实数,满足,求和的值本题的常规思路是将两式联立组成方程组,解得,的值再代入欲求值的式子得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得式子的值,如由可得,由+2可得这样的解题思想就是通常所说的“整体思想”(解决问题)(1)已知二元一次方程组,则 , (2)某班开展安全教育知识竞赛需购买奖品,买5支铅笔、3块橡皮、2本日记本共需

13、32元,买9支铅笔、5块橡皮、3本日记本共需58元,则购买20支铅笔、20块橡皮、20本日记本共需多少元?(3)对于实数,定义新运算:,其中,是常数,等式右边是通常的加法和乘法运算已知,求的值20某企业用规格是170cm40cm的标准板材作为原材料,按照图所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm)(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计)一共可裁剪出甲型板材张,乙型板材张; 恰好一共可以做出竖式和横式两种无盖装饰盒子多少

14、个?21每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元(1) 求a、b的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案22某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)

15、班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案23学校计划为“我和我的祖国”演讲比赛购买奖品已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的请设计出最省钱的购买方案,并说明理

16、由24小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元”李老师算了一下,说:“你肯定搞错了”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?25在平面直角坐标系xOy中,已知点M(a,b)如果存在点N(a,b),满足a|ab|,b|ab|,则称点N为点M的“控变点”(1)点A(1,2)的“控变点”B

17、的坐标为 ;(2)已知点C(m,1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4)如果点P(x,2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围26若关于x的方程ax+b0(a0)的解与关于y的方程cy+d0(c0)的解满足1xy1,则称方程ax+b0(a0)与方程cy+d0(c0)是“友好方程”例如:方程2x10的解是x0.5,方程y10的解是y1,因为1xy1,方程2x10与方程y10是“友好方程”(1)请通过计算判断方程2x95x2与方程5(y1)2(1y)342y是不是“友好方程”(2)

18、若关于x的方程3x3+4(x1)0与关于y的方程+y2k+1是“友好方程”,请你求出k的最大值和最小值27在平面直角坐标系中,点,且,满足(1)请用含的式子分别表示,两点的坐标;(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围28中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元(1)打

19、折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?29某超市投入31500元购进A、B两种饮料共800箱,饮料的成本与销售价如下表:(单位:元/箱)类别成本价销售价A4264B3652(1)该超市购进A、B两种饮料各多少箱?(2)全部售完800箱饮料共盈利多少元?(3)若超市计划盈利16200元,且A类饮料售价不变,则B类饮料销售价至少应定为每箱多少元?30如图所示,A(1,0),点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,点C的坐标为(3,2

20、)(1)直接写出点E的坐标 ;(2)在四边形ABCD中,点P从点O出发,沿OBBCCD移动,若点P的速度为每秒1个单位长度,运动时间为t秒,请解决以下问题;当t为多少秒时,点P的横坐标与纵坐标互为相反数;当t为多少秒时,三角形PEA的面积为2,求此时P的坐标【参考答案】*试卷处理标记,请不要删除一、解答题1(1);(2)或;点在B点左侧时,;点在B点右侧时,【分析】(1)根据非负数的性质分别求出、,根据平移规律得到平移方式,再由平移的坐标变化规律求出点的坐标;(2)设,根据三角形的面积公式列出方程,解方程求出,得到点P的坐标;分点点在B点左侧、点在B点右侧时,过点P作,根据平行线的性质解答【详

21、解】解:(1),解得,平移线段得到线段,使点与点对应,平移线段向上平移4个单位,再向右平移2个单位得到线段,即;(2)设,线段平移得到线段,解得,当P在B点左侧时,坐标为(1,0),当P在B点右侧时,坐标为(7,0),或;I、点在射线(不与点,重合)上,点在B点左侧时,满足的关系式是理由如下:如图1,过点作,由平移得到,点与点对应,点与点对应,;即,II、如图2,点在射线(不与点,重合)上,点在B点右侧时,满足的关系式是同的方法得,;即:综上所述:点在B点左侧时,点在B点右侧时,【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式关键是

22、理解平移规律,作平行线将相关角进行转化2(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,依据是平行于同一条直线的两条直线平行;所以C(CPH),所以

23、APC(APH)+(CPH)A+C97故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQHPM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ

24、+PQM180,APM+CQMA+C+PMQ2MPQ+2MQP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键3(1)见解析;(2)2MENMHN360;20【分析】(1)过点E作EPAB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等即可得证(2)过点H作GIAB,利用(1)中结论2MENMHN180,利用平行线的性质、角平分线性质、邻补角和为180,角与角之间的基本运算、等量代换等得出AMHHNC360(BMHHND),进而用等量代换得出2MENMHN360过点H作

25、HTMP,由的结论得2MENMHN360,H140,MEN110利用平行线性质得ENQENHNHT180,由角平分线性质及邻补角可得ENQENH140(180BMH)180继续使用等量代换可得ENQ度数【详解】解:(1)证明:过点E作EPAB交MH于点Q如答图1EPAB且ME平分BMH,MEQBMEBMHEPAB,ABCD,EPCD,又NE平分GND,QENDNEGND(两直线平行,内错角相等)MENMEQQENBMHGND(BMHGND)2MENBMHGNDGNDDNH180,DNHMHNMONBMHDHNBMHMHNGNDBMHMHN180,即2MENMHN180(2):过点H作GIAB如

26、答图2由(1)可得MEN(BMHHND),由图可知MHNMHINHI,GIAB,AMHMHI180BMH,GIAB,ABCD,GICDHNCNHI180HNDAMHHNC180BMH180HND360(BMHHND)又AMHHNCMHINHIMHN,BMHHND360MHN即2MENMHN360故答案为:2MENMHN360:由的结论得2MENMHN360,HMHN140,2MEN360140220MEN110过点H作HTMP如答图2MPNQ,HTNQENQENHNHT180(两直线平行,同旁内角互补)MP平分AMH,PMHAMH(180BMH)NHTMHNMHT140PMHENQENH140

27、(180BMH)180ENHHNDENQHND14090BMH180ENQ(HNDBMH)130ENQMEN130ENQ13011020【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强4(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,

28、PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CAD,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和

29、补角的性质,解题的关键是根据平行找出角度之间的关系5(1)见解析;(2)PEQ+2PFQ360;(3)30【分析】(1)首先证明13,易证得AB/CD;(2)如图2中,PEQ+2PFQ360作EH/AB理由平行线的性质即可证明;(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,想办法构建方程即可解决问题;【详解】(1)如图1中,23,12,13,AB/CD(2)结论:如图2中,PEQ+2PFQ360理由:作EH/ABAB/CD,EH/AB,EH/CD,12,34,2+31+4,PEQ1+4,同法可证:PFQBPF+FQD,BPE2BPF,EQD2FQD,1+BPE180,4+E

30、QD180,1+4+EQD+BPE2180,即PEQ+2(FQD+BPF)=360,PEQ+2PFQ360(3)如图3中,设QPFy,PHQxEPQz,则EQFFQH5y,EQ/PH,EQCPHQx,x+10y180,AB/CD,BPHPHQx,PF平分BPE,EPQ+FPQFPH+BPH,FPHy+zx,PQ平分EPH,Zy+y+zx,x2y,12y180,y15,x30,PHQ30【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键6(1) ;(2) ;【分析】(1)由平行线的性质得到,由

31、折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键7(1),1;(2)两位正整数为39,28,17,的最大值为;(3);【分析】(1)仿照样例进行计算即可;(2)由题设可以看出

32、交换前原数的十位上数字为a,个位上数字为b,则原数可以表示为,交换后十位上数字为b,个位上数字为a,则交换后数字可以表示为,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a与b的关系式,进而求出所有的两位数,然后求解确定出的最大值即可;(3)根据样例分解计算即可【详解】解:(1),;,故答案为:;1;(2)由题意可得:交换后的数减去交换前的数的差为:,或或,t为39,28,17;39139313,;2812821447,;17117,;的最大值(3);故答案为:;【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键8(1)

33、两;(2)2,3;(3)24,48;【分析】(1)由题意可得,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8,可确定的个位上的数,由可得273264,进而可确定,于是可确定的十位上的数,进而可得答案;(3)仿照(1)(2)两小题中的方法解答即可【详解】解:(1)因为,所以,所以是一个两位数;故答案为:两; (2)因为只有个位数是2的数的立方的个位数是8,所以的个位上的数是2,划去32768后面的三位数768得到32,因为,273264,所以,所以的十位上的数是3;故答案为:2,3;(3)由103=1000,1003=1000000,1000138241000000,10100,是两

34、位数;只有个位数是4的数的立方的个位数是4,的个位上的数是4,划去13824后面的三位数824得到13,81327,2030=24; 由103=1000,1003=1000000,10001105921000000,10100,是两位数;只有个位数是8的数的立方的个位数是2,的个位上的数是8,划去110592后面的三位数592得到110,64110125,4050,;=48【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键9(1)210-1;(2);(3)9210+1【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+

35、22+23+29的值;(2)根据题目中材料可以得到用类比的方法得到1+5+52+53+54+5n的值(3)根据题目中的信息,运用类比的数学思想可以解答本题【详解】解:(1)设S=1+2+22+23+29,将等式两边同时乘以2得:2S=2+22+23+24+29+210,将下式减去上式得2S-S=210-1,即S=210-1,即1+2+22+23+29=210-1故答案为210-1;(2)设S=1+5+52+53+54+5n,将等式两边同时乘以5得:5S=5+52+53+54+55+5n+5n+1,将下式减去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+5n=;(3)设S=1

36、+22+322+423+928+1029,将等式两边同时乘以2得:2S=2+222+323+424+929+10210,将上式减去下式得-S=1+2+22+23+29+10210,-S=210-1-10210,S=9210+1,即1+22+322+423+928+1029=9210+1【点睛】本题考查有理数的混合运算、数字的变化类,解题的关键是明确题意,发现数字的变化规律10(1),;(2);(3)【分析】(1)由“奇异数”的定义可得;根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意可列出等式,可求出x、y的值,即可求的值.【详解】解:(1)对任意一个两

37、位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”“奇异数”为21;f(15)=(15+51)11=6,f(10m+n)=(10m+n+10n+m)11=m+n;(2)f(10m+n)=m+n,且f(b)=8k+2k-1=8k=3b=103+23-1=35;(3)根据题意有 x、y为正数,且xyx=6,y=5a=610+5=65故答案为:(1),;(2);(3)【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键11(1)10;(2)(3):0,1,2【详解】分析:(1)利用对非负数x“四舍五入”到个位的值为,进而求解即可;(2)首先将看做

38、一个字母,解不等式,进而根据整数解的个数得出m的取值;(3)利用得出关于x的不等式,求解即可.详解:(1)10,;(2)解不等式组得:由不等式组的整数解恰有4个得,;(3),x为非负整数,x的值为:0,1,(2)点睛:此题主要考查了理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题得解.12(1),(2)所以和谐数为15,26,37,48,59;(3)F(t)的最大值是【分析】(1)根据题意,按照新定义的法则计算即可.(2)根据新定义的”和谐数”定义,将数用a,b表示列出式子解出即可.(3)根据(2)中计算的结果求出最大即可.【详解】解:(1)F(13),F(24);(2)原两位数可

39、表示为 新两位数可表示为 (且b为正整数 )b=2,a=5; b=3,a=6, b=4,a=7,b=5,a=8 b=6,a=9所以和谐数为15,26,37,48,59(3)所有“和谐数”中,F(t)的最大值是【点睛】本题为新定义的题型,关键在于读懂题意,按照规定解题.13(1),;(2),理由见解析;(3)【分析】(1)根据已知条件求出AD和BC的长度,即可得到D、C的坐标;(2)连接BD与直线CG相交,其交点Q即为所求,然后根据求出 QC、QG后即可得到Q点坐标;(3)过H作HFAB,过C作CMED,则根据已知条件、平行线的性质和角的有关知识可以得到 【详解】(1)解:由题意可得四边形ABCD是平行四边形,且AD与BC间距离为1-(-1)=2,平行四边形ABCD的高为2,AD=BC=S四边形ABCD2=122=6,C点坐标为(-4+6,-1)即(2,-1),D点坐标为(-2+6,1)即(4,1);(2)解:如图,连接交于,此时最小(两点之间,线段最短),过作于,设,又,(3),平分,又,设,则,过作,又,过作,于,又,【点睛】本题考查平行线的综合应用,熟练掌握平行线的判定与性质、平移坐标变换规律、两点之间线段最短的性质、角的有关知识和运算是解题关键 14(1)35,35,平行;(2)FMN

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服