资源描述
一、解答题
1.(了解概念)
在平面直角坐标系中,若,式子的值就叫做线段的“勾股距”,记作.同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.
(理解运用)
在平面直角坐标系中,.
(1)线段的“勾股距” ;
(2)若点在第三象限,且,求并判断是否为“等距三角形”﹔
(拓展提升)
(3)若点在轴上,是“等距三角形”,请直接写出的取值范围.
2.如图,已知,是的平分线.
(1)若平分,求的度数;
(2)若在的内部,且于,求证:平分;
(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.
3.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
4.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视.若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足.假定这一带水域两岸河堤是平行的,即,且.
(1)求、的值;
(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;
(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?
5.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系: .
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数
6.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
7.阅读理解:
计算×﹣×时,若把与分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下:
解:设为A,为B,
则原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.请用上面方法计算:
①×-×
②-.
8.探究与应用:
观察下列各式:
1+3= 2
1+3+5= 2
1+3+5+7= 2
1+3+5+7+9= 2
……
问题:(1)在横线上填上适当的数;
(2)写出一个能反映此计算一般规律的式子;
(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)
9.先阅读然后解答提出的问题:
设a、b是有理数,且满足,求ba的值.
解:由题意得,
因为a、b都是有理数,所以a﹣3,b+2也是有理数,
由于是无理数,所以a-3=0,b+2=0,
所以a=3,b=﹣2, 所以.
问题:设x、y都是有理数,且满足,求x+y的值.
10.观察下列各式,并用所得出的规律解决问题:
(1),,,……
,,,……
由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.
(2)已知,,则_____;______.
(3),,,……
小数点的变化规律是_______________________.
(4)已知,,则______.
11.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).
(1)观察一个等比列数1,,…,它的公比q= ;如果an(n为正整数)表示这个等比数列的第n项,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:
令S=1+2+4+8+16+…+230…①
等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
请根据以上的解答过程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.
12.先阅读下面的材料,再解答后面的各题:
现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表).
Q
W
E
R
T
Y
U
I
O
P
A
S
D
1
2
3
4
5
6
7
8
9
10
11
12
13
F
G
H
J
K
L
Z
X
C
V
B
N
M
14
15
16
17
18
19
20
21
22
23
24
25
26
给出一个变换公式:
将明文转成密文,如,即变为:,即A变为S.将密文转成成明文,如,即变为:,即D变为F.
(1)按上述方法将明文译为密文.
(2)若按上方法将明文译成的密文为,请找出它的明文.
13.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.
(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;
(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;
(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.
14.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
15.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.
(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.
(2)请用含的式子表示,并直接写出的取值范围.
16.阅读下列材料:
我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离;
例 1.解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为.
例 2.解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此不等式的解集为或.
参考阅读材料,解答下列问题:
(1)方程的解为 ;
(2)解不等式:;
(3)解不等式:.
17.在平面直角坐标系中,已知点,,连接,将向下平移6个单位得线段,其中点的对应点为点.
(1)填空:点的坐标为______,线段平移到扫过的面积为______.
(2)若点是轴上的动点,连接.
①如图,当点在轴正半轴时,线段与线段相交于点,用等式表示三角形的面积与三角形的面积之间的关系,并说明理由.
②当将四边形的面积分成1∶3两部分时,求点的坐标.
18.如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点A与点B的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点A与点B的“非常距离”为|y1﹣y2|.
(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为 ;
(2)已知点C(﹣1,2),点D为y轴上的一个动点.①若点C与点D的“非常距离”为2,求点D的坐标;②直接写出点C与点D的“非常距离”的最小值.
19.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.
20.用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)作侧面和底面、做成如图2的竖式和横式的两种无盖的长方体容器,
(1)现有长方形铁片2014张,正方形铁片1176张,如果将两种铁片刚好全部用完,那么可加工成竖式和横式长方体容器各有几个?
(2)现有长方形铁片a张,正方形铁片b张,如果加工这两种容器若干个,恰好将两种铁片刚好全部用完.则的值可能是( )
A.2019 B.2020 C.2021 D.2022
(3)给长方体容器加盖可以加工成铁盒.先工厂仓库有35张铁皮可以裁剪成长方形和正方形铁片,用来加工铁盒,已知1张铁皮可裁剪出3张长方形铁片或4张正方形铁片,也可以裁剪出1张长方形铁片和2张正方形铁片.请问怎样充分利用这35张铁皮,最多可以加工成多少个铁盒?
21.在平面直角坐标系中,点,点,点.
(1)的面积为______;
(2)已知点,,那么四边形的面积为______.
(3)奥地利数学家皮克发现了一类快速求解格点多边形的方法,被称为皮克定理:如果用m表示格点多边形内的格点数,n表示格点多边形边上的格点数,那么格点多边形的面积S和m与n之间满足一种数量关系.例如刚刚求解的几个多边形面积中,我们可以得到如表中信息:
形内格点数m
边界格点数n
格点多边形面积S
6
11
四边形
8
11
五边形
20
8
根据上述的例子,猜测皮克公式为______(用m,n表示),试计算图②中六边形的面积为______(本大题无需写出解题过程,写出正确答案即可).
22.某小区准备新建个停车位,以解决小区停车难的问题.已知新建个地上停车位和个地下停车位共需万元:新建个地上停车位和个地下停车位共需万元,
(1)该小区新建个地上停车位和个地下停车位各需多少万元?
(2)若该小区新建车位的投资金额超过万元而不超过万元,问共有几种建造方案?
(3)对(2)中的几种建造方案中,哪种方案的投资最少?并求出最少投资金额.
23.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.
(1)求,的坐标.
(2)若点为轴正半轴上的一个动点.
①如图1,当时,与的平分线交于点,求的度数;
②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.
24.阅读理解:
例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.
例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.
参考阅读材料,解答下列问题:
(1)方程|x﹣2|=3的解为 ;
(2)解不等式:|x﹣2|≤1.
(3)解不等式:|x﹣4|+|x+2|>8.
(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.
25.在平面直角坐标系中,点,,,且,,满足.
(1)请用含的式子分别表示,两点的坐标;
(2)当实数变化时,判断的面积是否发生变化?若不变,求其值;若变化,求其变化范围;
(3)如图,已知线段与轴相交于点,直线与直线交于点,若,求实数的取值范围.
26.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.
销售日期
销售数量(盏)
销售收入(元)
A品牌
B品牌
第一天
2
1
680
第二天
3
4
1670
(1)求A,B两种品牌护眼灯的销售价;
(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?
27.如图,已知,,且满足.
(1)求、两点的坐标;
(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;
(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.
28.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.
(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?
(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
29.阅读以下内容:
已知有理数m,n满足m+n=3,且求k的值.
三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于m,n的方程组,再求k的值;
乙同学:将原方程组中的两个方程相加,再求k的值;
丙同学:先解方程组,再求k的值.
(1)试选择其中一名同学的思路,解答此题;
(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.
30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元.
(1)求每支铅笔和每块橡皮的批发价各是多少元?
(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)5;(2)dAC=11,△ABC不是为“等距三角形”;(3)m≥4
【分析】
(1)根据两点之间的直角距离的定义,结合O、P两点的坐标即可得出结论;
(2)根据两点之间的直角距离的定义,用含x、y的代数式表示出来d(O,Q)=4,结合点Q(x,y)在第一象限,即可得出结论;
(3)由点N在直线y=x+3上,设出点N的坐标为(m,m+3),通过寻找d(M,N)的最小值,得出点M(2,-1)到直线y=x+3的直角距离.
【详解】
解:(1)由“勾股距”的定义知:dOA=|2-0|+|3-0|=2+3=5,
故答案为:5;
(2)∵dAB=|4-2|+|2-3|=2+1=3,
∴2dAB=6,
∵点C在第三象限,
∴m<0,n<0,
dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),
∵dOC=2dAB,
∴-(m+n)=6,即m+n=-6,
∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,
dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,
∵5+11≠12,11+12≠5,12+5≠11,
∴△ABC不是为“等距三角形”;
(3)点C在x轴上时,点C(m,0),
则dAC=|2-m|+3,dBC=|4-m|+2,
①当m<2时,dAC=2-m+3=5-m,dBC=4-m+2=6-m,
若△ABC是“等距三角形”,
∴5-m+6-m=11-2m=3,
解得:m=4(不合题意),
又∵5-m+3=8-m≠6-m,
②当2≤m<4时,dAC=m-2+3=m+1,dBC=4-m+2=6-m,
若△ABC是“等距三角形”,
则m+1+6-m=7≠3,
6-m+3=m+1,
解得:m=4(不和题意),
③当m≥4时,dAC=m+1,dBC=m-2,
若△ABC是“等距三角形”,
则m+1+m-2=3,
解得:m=4,
m-2+3=m+1恒成立,
∴m≥4时,△ABC是“等距三角形”,
综上所述:△ABC是“等距三角形”时,m的取值范围为:m≥4.
【点睛】
本题考查坐标与图形的性质,关键是对“勾股距”和“等距三角形”新概念的理解,运用“勾股距”和“等距三角形”解题.
2.(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3),过,分别作,,根据平行线的性质及平角的定义即可得解.
【详解】
解(1),分别平分和,
,,
,
;
(2),
,即,
,
是的平分线,
,
,
又,
,
又在的内部,
平分;
(3)如图,不发生变化,,过,分别作,,
则有,
,,,,
,,
,
,,
,
,
不变.
【点睛】
此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.
3.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
4.(1),;(2)30°;(3)15秒或82.5秒
【分析】
(1)解出式子即可;
(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;
(3)根据灯B的要求,t<150,在这个时间段内A可以转3次,分情况讨论.
【详解】
解:(1).
又,.
,;
(2)设灯转动时间为秒,
如图,作,而
,,
,
,
,
,
(3)设灯转动秒,两灯的光束互相平行.
依题意得
①当时,
两河岸平行,所以
两光线平行,所以
所以,
即:,
解得;
②当时,
两光束平行,所以
两河岸平行,所以
所以,,
解得;
③当时,图大概如①所示
,
解得(不合题意)
综上所述,当秒或82.5秒时,两灯的光束互相平行.
【点睛】
这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.
5.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,
∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=∠DEB=∠DEA,
∴∠PEA=∠AED,
∴∠DEP=∠PEA+∠AED=∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
6.(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】
解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
7.(1);(2).
【分析】
①根据发现的规律得出结果即可;
②根据发现的规律将所求式子变形,约分即可得到结果.
【详解】
(1)设为A,为B,
原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;
(2)设为A,为B,
原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.
【点睛】
考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
8.(1)2、3、4、5;(2)第n个等式为1+3+5+7+…+(2n+1)=n2;
(3)﹣1.008016×106.
【分析】
(1) 根据从1开始连续n各奇数的和等于奇数的个数的平方即可得到.
(2) 根据规律写出即可.
(3) 先提取符号,再用规律解题.
【详解】
解:(1)1+3=22
1+3+5=32
1+3+5+7=42
1+3+5+7+9=52
……
故答案为:2、3、4、5;
(2)第n个等式为1+3+5+7+…+(2n+1)=
(3)原式=﹣(1+3+5+7+9+…+2019)
=﹣10102
=﹣1.0201×106.
【点睛】
本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.
9.7或-1.
【分析】
根据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.
【详解】
解:∵,
∴,
∴=0,=0
∴x=±4,y=3
当x=4时,x+y=4+3=7
当x=-4时,x+y=-4+3=-1
∴x+y的值是7或-1.
【点睛】
本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.
10.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01
【分析】
(1)观察已知等式,得到一般性规律,写出即可;
(2)利用得出的规律计算即可得到结果;
(3)归纳总结得到规律,写出即可;
(4)利用得出的规律计算即可得到结果.
【详解】
解:(1),,,……
,,,……
由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.
故答案为:两;右;一;
(2)已知,,则;;
故答案为:12.25;0.3873;
(3),,,……
小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;
(4)∵,,
∴,
∴,
∴y=-0.01.
【点睛】
此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.
11.(1) , , ;(2);(3)
【分析】
(1)÷1即可求出q,根据已知数的特点求出a18和an即可;
(2)根据已知先求出3S,再相减,即可得出答案;
(3)根据(1)(2)的结果得出规律即可.
【详解】
解:(1)÷1=,
a18=1×()17=,an=1×()n﹣1=,
故答案为:,,;
(2)设S=3+32+33+…+323,
则3S=32+33+…+323+324,
∴2S=324﹣3,
∴S=
(3)an=a1•qn﹣1,a1+a2+a3+…+an=.
【点睛】
本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.
12.(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C.
【分析】
(1) 由图表找出N,E,T对应的自然数,再根据变换公式变成密文.
(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.
【详解】
解:(1)将明文NET转换成密文:
即N,E,T密文为M,Q,P;
(2)将密文D,W,N转换成明文:
即密文D,W,N的明文为F,Y,C.
【点睛】
本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.
13.(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或
【分析】
(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,得到OP=10,从而得出其坐标;
(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;
(3)分为点P在OC、BC上分类计算即可.
【详解】
解:(1) ∵a,b满足,
∴a=8,b=12,
∴点B(8,12);
当点P移动5秒时,其运动路程为5×2=10,
∴OP=10,
则点P坐标为(0,10),
故答案为:(8,12)、(0,10);
(2)由题意可得,第一种情况,当点P在OC上时,
点P移动的时间是:4÷2=2秒,
第二种情况,当点P在BA上时.
点P移动的时间是:(12+8+8)÷2=14秒,
所以在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或14秒.
(3)如图1所示:
∵△OBP的面积=20,
∴OP•BC=20,即×8×OP=20.
解得:OP=5.
∴此时t=2.5s
如图2所示;
∵△OBP的面积=20,
∴PB•OC=20,即×12×PB=20.
解得:BP=.
∴CP=.
∴此时t=,
综上所述,满足条件的时间t=2.5s或
【点睛】
本题考查矩形的性质,三角形的面积,坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
14.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
15.(1)①1;②;(2).
【分析】
(1)①②根据点F的坐标构建方程即可解决问题.
(2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<时,重叠部分是矩形AEHN.④如图4中,当-≤m<0时,重叠部分是正方形EFGH.分别求解即可解决问题.
【详解】
解:(1)①当点F与点B重合时,由题意3m=3,
∴m=1.
②当点F与点A重合时,由题意3m=-1,
∴m=,
故答案为1,.
(2)①当时,如图1.
,.
.
②当时,如图2.
.
.
③当时,如图3.
,.
④当时,如图4.
.
.
综上,
.
【点睛】
本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
16.(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.
【分析】
(1)利用在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8求解即可;
(2)先求出的解,再求出的解集即可;
(3)先在数轴上找出的解,即可得出的解集.
【详解】
解:(1)∵在数轴上到-3对应的点的距离等于5的点的对应的数为2或-8
∴方程的解为x=2或x=-8
(2)∵在数轴上到2对应的点的距离等于3的点的对应的数为-1或5
∴方程的解为x=-1或x=5
∴的解集为-1≤x≤5.
(3)由绝对值的几何意义可知,方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.
∵在数轴上4和-2对应的点的距离是6
∴满足方程的x的点在4的右边或-2的左边
若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3
∴方程的解为x=5或x=-3
∴的解集为x>5或x<-3.
故答案为(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.
【点睛】
本题考查了绝对值及不等式的知识. 解题的关键是理解表示在数轴上数与数对应的点之间的距离.
17.(1);24;(2)①;见解析;②或
【分析】
(1)由平移的性质得出点C坐标,AC=6,再求出AB,即可得出结论;
(2)①过点作交于,分别用CE表示出两个三角形的面积,即可得到答案;②根据题意,可分为两种情况进行讨论分析:(i)当交线段于,且将四边形分成面积为两部分时;当交于点,将四边形分成面积为两部分时;分别求出点P的坐标即可.
【详解】
解:(1)∵点A(3,5),将AB向下平移6个单位得线段CD,
∴C(3,56),
即:C(3,1),
由平移得,AC=6,四边形ABDC是矩形,
∵A(3,5),B(7,5),
∴AB=73=4,
∴CD=4,
∴点D的坐标为:;
∴S四边形ABDC=AB•AC=4×6=24,
即:线段AB平移到CD扫过的面积为24;
故答案为:;24;
(2)①过点作交于,则,如图:
∴,
又∵,
∴.
②(i)当交线段于,且将四边形分成面积为两部分时,
连接,延长交轴于点,则,
∵,
又
展开阅读全文