1、完整版新人教版七年级数学下册期中测试卷及答一、选择题1的算术平方根是()A3B3C9D92下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )ABCD3在平面直角坐标系中,点(1,3)位于( )A第一象限B第二象限C第三象限D第四象限4命题:对顶角相等;同旁内角互补;如果两条直线垂直于同一条直线,那么这两条直线互相平行;过一点有且只有一条直线与已知直线平行;平行于同一条直线的两条直线互相平行其中是真命题的有( )A5个B4个C3个D2个5如图,一副直角三角板图示放置,点在的延长线上,点在边上,则( )ABCD6小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1
2、道B2道C3道D4道7如图,AB/CD,EBF2ABE,ECF3DCE,设ABE,E,F,则,的数量关系是()A4+360B3+360C4360D323608如图,在平面直角坐标系中,点A1,A2,A3,A4,A5,A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),按此规律排列,则点A2021的坐标是()A B C D 二、填空题9的算术平方根是_10在平面直角坐标系中,已知点A的坐标为(2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是_11如图,分别作和的角平分线交于点,称为第一次操作,则_;接着作和的角平
3、分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,则_12如图:已知ABCD,CEBF,AEC45,则BFD_13如图,沿折痕折叠长方形,使C,D分别落在同一平面内的,处,若,则的大小是_14某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,表示非负实数的整数部分,例如,. 按此方案,第6棵树种植点为_;第2011棵树种植点_.15已知的面积为,其中两个顶点的坐标分别是,顶点在轴上,那么点的坐标为 _16如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒运动一个
4、单位,到点用时2秒,到点用时6秒,到点用时12秒,那么第421秒时这个点所在位置的坐标是_三、解答题17计算(1);(2)18已知a+b5,ab2,求下列各式的值(1)a2+b2;(2)(ab)219如图,试说明证明:(已知)_=_(垂直定义)_/_(_)(_)_/_(_)_(平行于同一直线的两条直线互相平行)(_)20在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)将 ABC先向下平移2个单位长度,再向右平移5个单位长度得到 A1B1C1,画出 A1B1C1(2)求 A1B1C1的面积21阅读下面的文字,解答问题,例如:,即,的整数
5、部分是2,小数部分是;(1)试解答:的整数部分是_,小数部分是_(2)已知小数部分是,小数部分是,且,请求出满足条件的的值22如图,在33的方格中,有一阴影正方形,设每一个小方格的边长为1个单位请解决下面的问题(1)阴影正方形的面积是_?(可利用割补法求面积)(2)阴影正方形的边长是_?(3)阴影正方形的边长介于哪两个整数之间?请说明理由23如图1,把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与
6、直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由【参考答案】一、选择题1A解析:A【分析】先计算,再计算的算术平方根即可【详解】,的算术平方根为故选A【点睛】本题考查了求一个数的算术平方根,先计算是解题的关键2B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得
7、到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键.3C【分析】根据平面直角坐标系中象限内点的特征判断即可;【详解】,点(1,3)位于第三象限;故选C【点睛】本题主要考查了平面直角坐标系中象限内点的特征,准确分析判断是解题的关键4D【分析】根据对顶角的概念、平行线的性质、平行公理、平行线的判定定理判断即可【详解】解:对顶角相等,是真命题,故正确;两直线平行,同旁内角互补,是假命题,故错误;在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线互相平行,是假命题,故是错误;过直线外一点有且只有一条直线与已知直线
8、平行,是假命题,故错误;平行于同一条直线的两条直线互相平行,是真命题,故正确;综上所述,真命题有,有2个故选:D【点睛】本题主要考查了对顶角的概念、平行线的性质、平行公理、平行线的判定定理,解题的关键是熟练掌握相关知识点5B【分析】根据平行线的性质可知, ,由 即可得出答案。【详解】解:, 故答案是B【点睛】本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补.6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌
9、握运算法则是解题关键7A【分析】由EBF2ABE,可得EBF2由EBF+BEC+F+ECF360,可得ECF360(2+),那么DCE由BECM+DCE,可得MBECDCE根据AB/CD,得ABEM,进而推断出4+360【详解】解:如图,分别延长BE、CD并交于点MAB/CD,ABEMEBF2ABE,ABE,EBF2EBF+BEC+F+ECF360,ECF360(2+)又ECF3DCE,DCE又BECM+DCE,MBECDCE4+360故选:A【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键8A【分析】根据图象可得移动4次图象完成一个循环,找规律得出
10、的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5解析:A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),的横坐标为2,纵坐标为0,的横坐标为,纵坐标为0,以此类推,的横坐标为,纵坐标为0,的坐标为,的坐标为故选:A【点睛】本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律二、填空题92【分析】先求出=4,再求出算术平方根即
11、可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力解析:2【分析】先求出=4,再求出算术平方根即可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力10(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与点Q关于x轴解析:(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的
12、坐标为(2,5),点P与点Q关于x轴对称,点P的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键1190 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算E解析:90 【分析】过P1作P1QAB,则P1QCD,根据平行线的性质得到AEF+CFE=180,AEP1=EP1Q,CFP1=FP1Q,结合角平分线的定义可计算EP1F,再同理求出P2,P3,总结规律可得【详解】解:过P1作P1QAB,则P1QCD,ABCD,AEF+CFE=180,
13、AEP1=EP1Q,CFP1=FP1Q,和的角平分线交于点,EP1F=EP1Q+FP1Q=AEP1+CFP1=(AEF+CFE)=90;同理可得:P2=(AEF+CFE)=45,P3=(AEF+CFE)=22.5,.,故答案为:90,【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解1245【分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出BFD【详解】解:ABCD,ECDAEC,CEBF,BFDECD,解析:45【分析】根据平行线的性质可得ECDAEC,BFDECD,等量代换即可求出
14、BFD【详解】解:ABCD,ECDAEC,CEBF,BFDECD,BFDAEC,AEC45,BFD45故答案为:45【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题关键1370【分析】由题意易图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解【详解】解:由长方形可得:,由折叠可得,;故答案为70【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键14403 【解析】当k=6时,x6=T(1)
15、+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达解析:403 【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键15或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:或【分析】已知,可知AB=8,已知的面积为,即可求出OC长,
16、得到C点坐标【详解】AB=8的面积为=16OC=4点的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解16【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1
17、,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,2020=400第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规
18、律是解决问题的关键三、解答题17(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键18(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2(a+b)22ab,即可求解;(1)根据完全平方公式变形,
19、得到(ab)2a2+b2-2ab,即可求解【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2(a+b)22ab,即可求解;(1)根据完全平方公式变形,得到(ab)2a2+b2-2ab,即可求解【详解】解:(1)a+b5,ab2,a2+b2(a+b)22ab522221;(2)a+b5,ab2,(ab)2a2+b2-2ab=21-22=17【点睛】本题主要考查了完全平方公式,熟练掌握 及其变形公式是解题的关键19,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质
20、证得结论,据此填空即可【详解】解析:,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;两直线平行,同位角相等【分析】根据平行线的判定定理得到ABCDEF,再由平行线的性质证得结论,据此填空即可【详解】证明:(已知),(垂直定义),(同位角相等,两直线平行),(已知),(内错角相等,两直线平行),(平行于同一直线的两条直线互相平行),(两直线平行,同位角相等)故答案为:CDF,90;AB,CD,同位角相等,两直线平行;已知;AB,EF,内错角相等,两直线平行;EF;两直线平行,同位角相等【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键20(1)见解析;(2
21、)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,A1B1C1的面积=【点睛】本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接21(1)4,;(2)【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出
22、m+n的值,可求满足条件的x的值【详解】(1),即,的整数部分是4,小数部分解析:(1)4,;(2)【分析】(1)根据夹逼法可求的整数部分和小数部分;(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值【详解】(1),即,的整数部分是4,小数部分是,故答案是:4;(2),的整数部分是4,小数部分是,的整数部分是13,小数部分是,所以解得:【点睛】本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题的关键22(1)5;(2);(3)2与3两个整数之间,见解析
23、【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的解析:(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解【详解】(1)阴影正方形的面积是33-4=5故答案为:5;(2)设阴影正方形的边长为x,则x2=5x=(-舍去)故答案为:;(3)阴影正方形的边长介于2与3两个整数之间【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法通过观察可知阴影部分的面积是5个小正方形的面积和会利用估算的方法
24、比较无理数的大小23(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键