资源描述
人教版中学七年级数学下册期末质量检测卷附答案
一、选择题
1.的算术平方根是()
A. B. C. D.
2.下列生活现象中,不是平移现象的是( )
A.人站在运行着的电梯上 B.推拉窗左右推动
C.小明在荡秋千 D.小明躺在直线行驶的火车上睡觉
3.下列各点在第二象限的是( )
A. B. C. D.
4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )
A. B. C. D.
6.下列运算正确的是( )
A.=﹣6 B. C.=±2 D.2×3=5
7.如图,将一块三角板的直角顶点放在直尺的一边上,若∠1=55°,则∠2的度数为( )
A.55° B.45° C.40° D.35°
8.如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到,,,,…那么点的坐标为( )
A. B. C. D.
九、填空题
9.如果,的平方根是,则__________.
十、填空题
10.点P关于y轴的对称点是(3,﹣2),则P关于原点的对称点是__.
十一、填空题
11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠BFD=45°;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是______(填序号).
十二、填空题
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
十三、填空题
13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______.
十四、填空题
14.对于有理数x、y,当x≥y时,规定x※y=yx;而当x<y时,规定x※y=y-x,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m的值为______.
十五、填空题
15.已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________.
十六、填空题
16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.
十七、解答题
17.(1)计算
(2)计算:
十八、解答题
18.求下列各式中的 .
(1) (2)
十九、解答题
19.请把以下证明过程补充完整,并在下面的括号内填上推理理由:
已知:如图,∠1=∠2,∠A=∠D.
求证:∠B=∠C.
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,( )
∴∠2=____________(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD( )
∵∠A=∠D(已知)
∴∠D=_____________(等量代换)
∴____________∥CD( )
∴∠B=∠C( )
二十、解答题
20.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+2,y0+4),将△ABC作同样的平移得到△A1B1C1.
(1)请画出△A1B1C1并写出点A1,B1,C1的坐标;
(2)求△A1B1C1的面积;
二十一、解答题
21.阅读下面的文字,解答问题,例如:,即,
的整数部分是2,小数部分是;
(1)试解答:的整数部分是____________,小数部分是________
(2)已知小数部分是,小数部分是,且,请求出满足条件的的值.
二十二、解答题
22.(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为.正方形的周长为,则______(填“”,或“”,或“”)
(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
二十四、解答题
24.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线.
(2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据).
二十五、解答题
25.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据算术平方根的意义求解即可.
【详解】
解:16的算术平方根为4,
故选:A.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.
2.C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发
解析:C
【分析】
根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小,解答即可.
【详解】
解:根据平移的性质,A、B、D都正确,而C小明在荡秋千,荡秋千的运动过程中,方向不断的发生变化,不是平移运动.
故选:C.
【点睛】
本题考查了图形的平移,解题的关键是掌握图形的平移只改变图形的位置,而不改变图形的形状和大小.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A.在第一象限,故本选项不合题意;
B.在第四象限,故本选项不合题意;
C.在第二象限,故本选项符合题意.
D.在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4.C
【分析】
根据命题的定义分别对各语句进行判断.
【详解】
解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.A
【分析】
过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.
【详解】
如图,过三角板60°角的顶点作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠3+∠4=60°,
∴∠1+∠2=60°,
∵∠1=25°,
∴∠2=35°,
故选A.
【点睛】
本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.
6.B
【分析】
分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.
【详解】
A、,此选项计算错误;
B、,此选项计算正确;
C、,此选项计算错误;
D、2×3=6,此选项计算错误;
故选:B.
【点睛】
本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.
7.D
【分析】
先根据平行线的性质得到∠3=55°,再结合平角的定义即可得到结论.
【详解】
解:如图,∵ABCD,
∴∠1=∠3=55°,
∵∠2+90°+∠3=180°,
∴∠2=35°,
故选:D.
【点睛】
本题考查了平行线的性质,平角的定义,熟记平行线的性质是解题的关键.
8.D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算
解析:D
【分析】
根据图象移动的得出移动4次一个循环,得出结果即可;
【详解】
根据图象可得移动4次图象完成一个循环,
∵,
∴的坐标是;
故答案选D.
【点睛】
本题主要考查了点的坐标规律题,准确计算是解题的关键.
九、填空题
9.-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
解析:-4
【分析】
根据题意先求出 ,再代入,即可.
【详解】
解:∵的平方根是,
∴ ,
∴ ,
∴,
故答案为:
【点睛】
本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.
十、填空题
10.【分析】
直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.
【详解】
解:∵点P关于y轴的对称点是,
∴点,
则P关于原点的对称点是.
故答案为:.
【点睛】
本题考
解析:
【分析】
直接利用关于y轴对称点的性质得出P点坐标,再利用关于原点对称点的性质得出答案.
【详解】
解:∵点P关于y轴的对称点是,
∴点,
则P关于原点的对称点是.
故答案为:.
【点睛】
本题考查关于x轴、y轴对称的点的坐标求法、关于原点对称的点的坐标求法,牢记相关性质是解题关键.
十一、填空题
11.①②③.
【分析】
由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B
解析:①②③.
【分析】
由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.
【详解】
解:∵EG∥BC,且CG⊥EG于G,
∴∠BCG+∠G=180°,
∵∠G=90°,
∴∠BCG=180°﹣∠G=90°,
∵GE∥BC,
∴∠GEC=∠BCA,
∵CD平分∠BCA,
∴∠GEC=∠BCA=2∠DCB,
∴①正确.
∵CD,BE平分∠BCA,∠ABC
∴∠BFD=∠BCF+∠CBF=(∠BCA+∠ABC)=45°,
∴②正确.
∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,
∴∠GCE=∠ABC,
∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,
∴∠ADC=∠GCD,
∴③正确.
∵∠GCE+∠ACB=90°,
∴∠GCE与∠ACB互余,
∴CA平分∠BCG不正确,
∴④错误.
故答案为:①②③.
【点睛】
本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.
十二、填空题
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
十三、填空题
13.【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性
解析:
【分析】
根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.
【详解】
沿翻折使与重合
故答案为:.
【点睛】
此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.
十四、填空题
14.或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=
解析:或.
【分析】
根据新定义规定的式子将数值代入再计算即可;
先根据新定义的式子将数值代入分情况讨论列方程求解即可.
【详解】
解:
4※(-2)=;
(-1)※1=
[(-1)※1]※m=2※m=36
当时,原式可化为
解得:
;
当时,原式可化为:
解得:;
综上所述,m的值为:或;
故答案为:16;或.
【点睛】
本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.
十五、填空题
15.(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐
解析:(-4,3) .
【分析】
到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值.
【详解】
解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数.
所以点A的坐标为(-4,3)
故答案为:(-4,3) .
【点睛】
本题考查点的坐标,利用数形结合思想解题是关键.
十六、填空题
16.【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故
解析:
【分析】
先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.
【详解】
解:,,,,,
∴,
“凸”形的周长为20,
又∵的余数为1,
细线另一端所在位置的点在的中点处,坐标为.
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
十七、解答题
17.(1);(2)
【分析】
(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;
(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.
【详解】
解
解析:(1);(2)
【分析】
(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;
(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.
十八、解答题
18.(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
解析:(1)或;(2).
【分析】
(1)先将方程进行变形,再利用平方根的定义进行求解即可;
(2)先将方程进行变形,再利用立方根的定义进行求解即可.
【详解】
解:(1),
∴,
∴;
(2),
∴,
∴.
【点睛】
本题考查了平方根与立方根,理解相关定义是解决本题的关键.
十九、解答题
19.对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(
解析:对顶角相等;∠3;两直线平行,同位角相等;∠BFD;AB;内错角相等,两直线平行;两直线平行,内错角相等
【分析】
根据对顶角相等,平行线的性质与判定定理填空即可.
【详解】
证明:∵∠1=∠2,(已知)
又:∵∠1=∠3,(对顶角相等)
∴∠2=∠3(等量代换)
(同位角相等,两直线平行)
∴∠A=∠BFD(两直线平行,同位角相等)
∵∠A=∠D(已知)
∴∠D=∠BFD(等量代换)
∴AB∥CD(内错角相等,两直线平行)
∴∠B=∠C(两直线平行,内错角相等).
【点睛】
本题考查了平行线的性质与判定,掌握平行线的性质与判定是解题的关键.
二十、解答题
20.(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1
解析:(1)画图见解析,A1(1,2),B1(0,0),C1(-2,3);(2)
【分析】
(1)分别作出A,B,C的对应点A1,B1,C1,从而可得坐标.
(2)利用分割法求解即可.
【详解】
解:(1)如图,A1B1C1并写即为所求作,A1(1,2),B1(0,0),C1(-2,3).
(2)△A1B1C1的面积=3×3-×3×2-×1×2-×1×3=.
【点睛】
本题考查作图-平移变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二十一、解答题
21.(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分
解析:(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分是,
故答案是:4;;
(2)∵,
∴,
∴,
∴的整数部分是4,小数部分是,
∵,
∴,
∴的整数部分是13,小数部分是,
∵
所以
解得:.
【点睛】
本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题的关键.
二十二、解答题
22.(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的
解析:(1);(2)<;(3)不能,理由见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
设大正方形的边长为xcm,
∴ ,
∴
∴大正方形的边长为cm;
(2)设圆的半径为r,
∴由题意得,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵正方形的面积为900cm2,
∴正方形的边长为30cm
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
二十四、解答题
24.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
故答案为垂;
(2)证明:平分,平分(已知),
,(角平分线的定义),
(已知),
(两直线平行,内错角相等),
(等量代换),
(等式性质),
(内错角相等,两直线平行).
【点睛】
本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
二十五、解答题
25.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=∠BAO,∠FAO=∠GAO,
∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.
在△AEF中,∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO= ∠BAO,∠EOQ=∠BOQ,
∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,
∵有一个角是另一个角的倍,故有:
①∠EAF=∠F,∠E=30°,∠ABO=60°;
②∠F=∠E,∠E=36°,∠ABO=72°;
③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);
④∠E=∠F,∠E=54°,∠ABO=108°(舍去);
∴∠ABO为60°或72°.
【点睛】
本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想.
展开阅读全文