资源描述
河南省实验中学八年级上册期末数学试卷含答案
一、选择题
1、下列是我们一生活中常见的安全标识,其中不是轴对称图形的是( )
A. B. C. D.
2、世界最大的单口径球面射电望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒.数据0.00519用科学记数法可以表示为( )
A. B. C. D.
3、下列运算中正确的是( )
A. B. C. D.
4、使分式有意义的x的取值范围是( )
A. B. C. D.
5、下列各式由左边到右边的变形,是因式分解的是( )
A. B.
C. D.
6、下列分式计算错误的是( )
A. B. C. D.
7、如图,∠1=∠2,添加下列条件仍不能判定△ABD≌△ACD的是( )
A.∠3=∠4 B.BD=CD C.∠B=∠C D.AB=AC
8、若关于的方程有增根,则的值为( )
A.-5 B.0 C.1 D.2
9、如图,△ABC中,,外角,则的大小是( )
A.60° B.50° C.40° D.30°
二、填空题
10、如图,中,,的角平分线、相交于点,过作交的延长线于点,交于点,则下列结论:①;②;③;④四边形,其中正确的个数是( )
A.4 B.3 C.2 D.1
11、若分式 的值为0,则x的值是_________.
12、若点关于y轴的对称点为,则______.
13、如图,数轴上有四条线段分别标有①②③④,若x为正整数,则表示的值的点落在线段_________上(填序号).
14、计算______.
15、如图,在Rt△ABC中,,,,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且,则的最小值为______.
16、五边形的内角都相等,则该五边形的一个内角的度数为______.
17、若,则的值为___________.
18、如图,,,点和点分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,点和点运动速度之比为,运动到某时刻点和点同时停止运动,在射线上取一点,使与全等,则的长为___________.
三、解答题
19、将下列各式分解因式:
(1); (2)
20、先化简:,再取一个适当的值代入求值.
21、如图已知△ABC≌△DEF,点B、E、C、F在同一直线上,∠A=85°,∠B=60°,AB=8,EH=1、
(1)求∠F的度数与DH的长;
(2)求证:AB∥DE.
22、已知:直线,直线AD与直线BC交于点E,∠AEC=110°.
(1)如图①,BF平分∠ABE交AD于F,DG平分∠CDE交BC于G,求∠AFB+∠CGD的度数;
(2)如图②,∠ABC=30°,在∠BAE的平分线上取一点P,连接PC,当∠PCD=∠PCB时,直接写出∠APC的度数.
23、“双减”政策受到各地教育部门的积极响应,某校为增加学生的课外活动时间,现决定增购两种体育器材,篮球和足球.已知每个篮球的单价比每个足球的单价多25元,用840元购买篮球和用590元购买足球的数量相同.
(1)求篮球和足球的单价分别是多少元?
(2)学校决定购买两种球类共40个,若购买足球的数量不超过篮球的2倍,那么该校最多购买多少个足球?
24、如图①是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!
如图②是(a+b)n的三个展开式.结合上述两图之间的规律解题:
(1)请直接写出(a+b)4的展开式:(a+b)4= .
(2)请结合图②中的展开式计算下面的式:(x+2)3= .
25、问题引入:
(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);
拓展研究:
(2)如图3,,,,猜想度数(用表示),并说明理由;
(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).
一、选择题
1、B
【解析】B
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【详解】解:A、B、D选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;
C选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:C.
【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、B
【解析】B
【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.
【详解】解:0.00519=.
故选:B.
【点睛】本题考查用科学记数法表示较小的数,熟练掌握一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定是解题的关键.
3、B
【解析】B
【分析】根据合并同类项法则、幂的乘方、同底数幂的乘法、积的乘方法则逐一判断即可.
【详解】A.a3与2a2不是同类项,不能合并,原计算错误,不合题意;
B. ,计算正确,符合题意;
C. ,原计算错误,不合题意;
D. ,原计算错误,不合题意;
故选:B.
【点睛】本题考查了合并同类项法则、幂的乘方、同底数幂的乘法、积的乘方法则,解题的关键是熟练掌握整式运算的法则.
4、B
【解析】B
【分析】根据分式的分母不能0即可得.
【详解】解:由题意得:,
解得,
故选:B.
【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能0是解题关键.
5、B
【解析】B
【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.
【详解】解:等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于因式分解,故本选项符合题意;
C.是整式乘法,不属于因式分解,故本选项不符合题意;
D.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:.
【点睛】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.
6、C
【解析】C
【分析】根据分式的基本性质和分式的运算法则,对四个选项逐一判断,即可得到答案.
【详解】解:A.把分式分子和分母同时乘以a(a≠0),分式的值不变,变形正确,
B.,变形正确,
C.,变形不正确,
D.,变形正确,
故选:C.
【点睛】本题考查分式的加减法和分式的基本性质,正确掌握分式的运算法则和分式的基本性质是解题的关键.
7、B
【解析】B
【分析】根据全等三角形的判定定理逐个判断即可.
【详解】解:A.∠1=∠2,AD=AD,∠3=∠4,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项不符合题意;
B.BD=CD,AD=AD,∠1=∠2,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项符合题意;
C.∠B=∠C,∠1=∠2,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△ACD,故本选项不符合题意;
D.AB=AC,∠1=∠2,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项不符合题意;
故选:B.
【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.
8、A
【解析】A
【分析】根据题意可得x=2,然后把x的值代入整式方程中进行计算即可解答.
【详解】解:,
去分母得,m+1+2x=0,
解得:,
∵方程有增根,
∴x=2,
把x=2代入,得,
,
解得.
故选A.
【点睛】本题考查了分式方程的增根,根据题意求出x的值后代入整式方程中进行计算是解题的关键.
9、B
【解析】B
【分析】由∠BAC,∠ACD的度数,利用三角形的外角等于两不相邻的内角和即可求出∠B的度数.
【详解】解:∵∠BAC=60°,∠ACD=110°,
∴∠B=∠ACD-∠BAC=50°.
故选:B.
【点睛】本题考查了三角形的外角,熟练掌握三角形的外角性质是解题的关键.
二、填空题
10、B
【解析】B
【分析】根据三角形全等的判定和性质以及三角形内角和定理逐一分析判断即可.
【详解】解:∵在△ABC中,∠ACB=90°,
∴∠CAB+∠ABC=90°
∵AD、BE分别平分∠BAC、∠ABC,
∴∠BAD=,∠ABE=
∴∠BAD+∠ABE=
∴∠APB=180°-(∠BAD+∠ABE)=135°,故①正确;
∴∠BPD=45°,
又∵PF⊥AD,
∴∠FPB=90°+45°=135°
∴∠APB=∠FPB
又∵∠ABP=∠FBP
BP=BP
∴△ABP≌△FBP(ASA)
∴∠BAP=∠BFP,AB=AB,PA=PF,故②正确;
在△APH与△FPD中
∵∠APH=∠FPD=90°
∠PAH=∠BAP=∠BFP
PA=PF
∴△APH≌△FPD(ASA),
∴AH=FD,
又∵AB=FB
∴AB=FD+BD=AH+BD,故③正确;
连接HD,ED,
∵△APH≌△FPD,△ABP≌△FBP
∴,,PH=PD,
∵∠HPD=90°,
∴∠HDP=∠DHP=45°=∠BPD
∴HD∥EP,
∴
∵
故④错误,
∴正确的有①②③,
故答案为:B.
【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意AAA和SAS不能判定两个三角形全等.
11、1
【分析】根据分式的值为零的条件得到且,解方程即可.
【详解】解:根据分式的值为零的条件得到且,
解得.
故答案为:.
【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.
12、-1
【分析】根据关于y轴对称的点的坐标特征,即横坐标互为相反数,纵坐标相等,从而得到a、b的值,进而求得a+b的值.
【详解】解:∵点关于y轴的对称点为,
∴,
∴a+b=3+(-4)=-1,
故答案为:-1.
【点睛】本题考查关于y轴对称的点的坐标特征应用,熟练掌握关于y轴对称的点的坐标特征公式是解题关键.
13、②
【分析】先根据分式的基本性质通分,约分对原分式进行化简,然后分析化简后的结果的范围即可得出答案.
【详解】
∵x为正整数
∴表示的值的点落在线段②上,
故答案为:②.
【点睛】本题主要考查分式的化简及估算,掌握分式的基本性质是解题的关键.
14、125##18
【分析】先把原式变为,再根据积的乘方的逆运算求解即可.
【详解】解:
,
故答案为:0.124、
【点睛】本题主要考查了积的乘方的逆运算,熟知积的乘方的逆运算是解题的关键.
15、【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答
【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,
【解析】
【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答
【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,
,
当N,P,在同一直线上,且时,的值最小,等于垂线段的长,
,
的最小值为,
故答案为:.
【点睛】本题考查最短路线问题,涉及垂线段最短、含30°角直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键.
16、##108度
【分析】根据多边形的内角和公式直接计算即可.
【详解】解:∵五边形的内角都相等,
∴.
故答案为:.
【点睛】本题考查了多边形内角和公式,牢记多边形的内角和为是解题的关键.
【解析】##108度
【分析】根据多边形的内角和公式直接计算即可.
【详解】解:∵五边形的内角都相等,
∴.
故答案为:.
【点睛】本题考查了多边形内角和公式,牢记多边形的内角和为是解题的关键.
17、18
【分析】把各项后分解为,然后再把代入计算求值即可.
【详解】解:∵
∴.
故答案为:17、
【点睛】本题主要考查了因式分解的应用,正确提取公因式是解答本题的关键.
【解析】18
【分析】把各项后分解为,然后再把代入计算求值即可.
【详解】解:∵
∴.
故答案为:17、
【点睛】本题主要考查了因式分解的应用,正确提取公因式是解答本题的关键.
18、60或32##32或60
【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长.
【详解】解:
【解析】60或32##32或60
【分析】根据题意,可以分两种情况进行讨论,第一种是△AEG≌△BEF,第二种是△AEG≌△BFE,然后根据全等三角形的性质和题目中的数据,即可计算出AG的长.
【详解】解:当△AEG≌△BEF时,AE=BE,AG=BF,
∵AB=80,
∴AE=BE=40,
∵点E和点F运动速度之比为2:3,
∴,
解得BF=60;
当△AEG≌△BFE时,AE=BF,AG=BE,
设BE=2x,则BF=3x,
∴AE=3x,
∵AB=80,AB=AE+BE,
∴80=3x+2x,
解得x=16,
∴AG=BE=2x=32;
由上可得,AG的长为60或32,
故答案为:60或31、
【点睛】本题考查全等三角形的性质,解答本题的关键是明确题意,利用分类讨论和数形结合的思想解答.
三、解答题
19、(1);(2)
【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】解:(1)
=
=;
(2)
=
=.
【点睛】
【解析】(1);(2)
【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】解:(1)
=
=;
(2)
=
=.
【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
20、,2(答案不唯一)
【分析】首先根据分式的加减法法则计算括号内的,再将分式的分子和分母分解因式,并约分,然后代入适合的值计算即可.
【详解】
=
.
要使分式有意义,,,,
不能为2,,1,
取,
【解析】,2(答案不唯一)
【分析】首先根据分式的加减法法则计算括号内的,再将分式的分子和分母分解因式,并约分,然后代入适合的值计算即可.
【详解】
=
.
要使分式有意义,,,,
不能为2,,1,
取,
当时,原式.(答案不唯一)
【点睛】本题主要考查了分式的混合运算,掌握运算法则是解题的关键.注意:选择适当的x的值要保证分式有意义.
21、(1)35°,6;(2)见解析
【分析】(1)根据三角形内角和求得,再根据全等三角形的性质得到,,即可求解;
(2)由全等三角形的性质可得,即可求解.
【详解】解:(1)在中,,,∴
∵
∴,
∴
【解析】(1)35°,6;(2)见解析
【分析】(1)根据三角形内角和求得,再根据全等三角形的性质得到,,即可求解;
(2)由全等三角形的性质可得,即可求解.
【详解】解:(1)在中,,,∴
∵
∴,
∴
故答案为,
(2)∵
∴
∴
【点睛】此题考查了全等三角形的性质,涉及了三角形内角和的性质,平行线的判定,解题的关键是掌握相关基本性质.
22、(1)195°
(2)50°或10°
【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;
(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在
【解析】(1)195°
(2)50°或10°
【分析】(1)过点E作MN∥AB.利用平行线的判定和性质并结合角平分线的概念分析求解;
(2)分P点在BC的左侧、P在BC的右侧且在CD上方、P在BC的右侧且在CD下方三种情况讨论,结合角度的倍数关系和平行线的性质分析求解.
(1)
解:过点E作MN∥AB,如下图①所示:
∵AB∥CD,MN∥AB,
∴AB∥MN∥CD,
∴∠BAE=∠AEM,∠DCE=∠CEM,∠ABE=∠BEN,∠NED=∠EDC,
∵∠AEC=110°,
∴∠BED=110°,
∴∠BAE+∠DCE=∠AEM+∠CEM=∠AEC=110°,
∠ABE+∠CDE=∠BEN+∠NED=∠BED=110°,
∵BF平分∠ABE,DG平分∠CDE,
∴∠ABF=∠ABE,∠CDG=∠CDE,
∴∠AFB+∠CGD=180°-(∠BAE+∠ABF)+180°-(∠DCE+∠CDG)
=180°-∠BAE-∠ABE+180°-∠DCE-∠CDE
=360°-(∠BAE+∠DCE)-(∠ABE+∠CDE)
=360°-110°-×110°
=195°,
∴∠AFB+∠CGD的度数为195°.
(2)
解:分类讨论:
情况一:当点P位于BC左侧时,如下图②所示:
此时∠PCD=∠PCB不可能成立,故此情况不存在;
情况二:当点P位于BC右侧且位于CD上方时,过点P作PM∥AB,如下图③所示:
∵∠AEC=110°,∠ABC=30°,
∴∠BAE=110°-30°=80°,
∵AB∥CD,MP∥AB,
∴AB∥MP∥CD,
∴∠APM=∠BAP=∠BAE=40°,
∠ABC=∠BCD=30°,
又∵∠PCD=∠PCB,
∴∠PCD=∠BCD=10°,
∴∠MPC=∠PCD=10°,
∴∠APC=∠MPC+∠APM=10°+40°=50°;
情况三:当点P位于BC右侧且位于CD下方时,过点P作PM∥AB,如下图④所示:
∵∠AEC=110°,∠ABC=30°,
∴∠BAE=110°-30°=80°,
∵AB∥CD,MP∥AB,
∴AB∥MP∥CD,
∴∠APM=∠BAP=∠BAE=40°,
∠ABC=∠BCD=30°,
又∵∠PCD=∠PCB,
∴∠PCD=∠BCD=30°,
∴∠MPC=∠PCD=30°,
∴∠APC=∠APM-∠MPC=40°-30°=10°,
综上,∠APC的度数为50°或10°.
【点睛】本题考查平行线的判定和性质、三角形的外角性质、角平分线的定义、对顶角相等等知识,属于中考常考题型,掌握平行线的判定和性质,正确添加辅助线是解题关键.
23、(1)篮球的单价为84元,足球的单价为59元
(2)26个
【分析】(1)设每个足球的单价为x元,根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;
(2)设该校购买m个
【解析】(1)篮球的单价为84元,足球的单价为59元
(2)26个
【分析】(1)设每个足球的单价为x元,根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;
(2)设该校购买m个足球,根据“购买足球的数量不超过篮球的2倍”列一元一次不等式,求解即可.
(1)
解:设每个足球的单价为x元,
根据题意,得:,
解得x=59,
经检验,x=59是原方程的根,且符合题意,
59+25=84(元),
答:篮球的单价为84元,足球的单价为59元;
(2)
设该校购买m个足球,
根据题意,得m≤2(40-m),
解得m≤,
m取得的最大正整数为26,
答:该校最多购买26个足球.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立关系式是解题的关键.
24、(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(
【解析】(1)a4+4a3b+6a2b2+4ab3+b4;(2)x3+6x2+12x+8
【分析】(1)根据杨辉三角中系数的规律,写出展开式即可;
(2)根据得出的系数规律,写出展开式即可.
【详解】解:(1)a4+4a3b+6a2b2+4ab3+b4,
故答案为:a4+4a3b+6a2b2+4ab3+b4;
(2)(x+2)3=x3+6x2+12x+8,
故答案为:x3+6x2+12x+7、
【点睛】本题考查了对完全平方公式的应用,杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.
25、(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
【解析】(1),
(2),理由见解析
(3)
【分析】(1)由角平分线的定义得,则,再利用三角形内角和定理可得答案;
(2)根据三角形内角和定理得,而,代入化简即可;
(3)由(2)同理可得答案.
(1)
解:点是和平分线的交点,
,
,
在中,
,
,
,
,
故答案为:;
在中,,
,
,
,
,
故答案为:;
(2)
解:,理由如下:
,,,
,
,
,
,
;
(3)
解:在中,,
,
,
,
,
故答案为:.
【点睛】本题主要考查了三角形内角和定理,角平分线的定义,解题的关键是采取类比的方法,同时渗透了整体思想.
展开阅读全文