资源描述
人教版下册五年级数学期末复习试卷竞赛培优训练易错题专项练习(及答案)
一、五年级数学竞赛训练
1.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需 分钟.
2.如图是一个正方体的平面展开图,若该正方体相对的两个面上的数值相等,则a﹣b×c的值是 .
3.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水 千克.
4.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有 块.
5.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是 元.
6.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是 .
7.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是 .
8.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是 .
9.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是 .
10.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有 张 .
11.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是 .
12.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有 种.
13.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了
分钟.
14.(7分)如图,按此规律,图4中的小方块应为 个.
15.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是 .
16.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:
①A+B+C=79
②A×A=B×C
那么,这个自然数是 .
17.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B两人各自答题,得分之和是58分,A比B多得14分,则A答对 道题.
18.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是 .
19.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是 .(1步指每“加”或“减”一个数)
20.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出 元.
21.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.
22.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市 千米处追上乙车.
23.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是 ;
24.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.
25.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年 岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)
26.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比三角形BCE的面积大 1000 平方米.
27.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).
将剩下的纸片展开、平铺,得到的图形是 A
28.如图,从A到B,有 条不同的路线.(不能重复经过同一个点)
29.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成 种不同的含有64个小正方体的大正方体.
30.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是 .
【参考答案】
一、五年级数学竞赛训练
1.解:假设每人每分钟修大坝1份
洪水冲毁大坝速度:
(10×45﹣20×20)÷(45﹣20)
=(450﹣400)÷25
=50÷25
=2(份)
大坝原有的份数
45×10﹣2×45
=450﹣90
=360(份)
14人修好大坝需要的时间
360÷(14﹣2)
=360÷12
=30(分钟)
答:14人修好大坝需30分钟.
故答案为:30.
2.解:依题意可知:
3a+2与17是对立面,3a+2=17,所以a=5;
7b﹣4与10是对立面,7b﹣4=10,所以b=2;
a+3b﹣2c与11的对立面,5+3×2﹣2c=11,所以c=0;
所以a﹣b×c=5
故答案为:5
3.解:2.5×2÷(6﹣1)+2.5
=5÷5+2.5
=1+2.5
=3.5(千克)
答:B桶中原来有水3.5千克.
故答案为:3.5.
4.解:依题意可知:
第一层的共有4个角满足条件.
第二层的4个角是4面红色,去掉所有的角块其余的符合条件.
分别是3+2+3+2=10(个);
共10+4=14(个);
故答案为:14
5.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)
=5000××××
=5000(元)
答:小胖这个月的工资是5000元.
故答案为:5000.
6.解:原式=++++
=++++
=×(﹣+﹣+…+﹣)
=×()
=
5+24=29
故答案为:29
7.解:依题意可知:
结果的首位是2,那么在第二个结果中的首位还是2.
再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.
当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.
当第一个乘数尾数是3时,来看看偶数的情况.
23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.
故是23×95=2185,那么23+95=118.
故答案为:118
8.解:根据分析:
这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;
2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.
又因为这个数大于1,所以这个数最小是61.
故答案为:61.
9.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.
2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.
故答案为:1034
10.解:彤彤给林林6张,林林有总数的;
林林给彤彤2张,林林有总数的;
所以总数:(6+2)÷(﹣)=96,
林林原有:96×﹣6=66,
故答案为:66.
11.解:3n是5的倍数,3n的个数一定是0或5
又因为大于0的自然数n是3的倍数,
所以3n最小是45
3n=45
n=15
所以n最小取15时,n是3的倍数,3n是5的倍数.
答:n的最小值是15.
故答案为:15.
12.解:根据分析可得,
朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,
24﹣4+1=21(种)
答:朝上一面的4个数字的和有 21种.
故答案为:21.
13.解:6÷2=3(组)
11时30分﹣8是=3时30分=210分
210×2÷3
=420÷3
=140(分钟)
答:每人打了140分钟.
故答案为:140.
14.解:因为图1中小方块的个数为1+2×3=7个,
图2中小方块的个数为1+(1+2)+3×4=16个,
图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,
所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,
故答案为:50.
15.解:依题意可知:
要满足是六合数.分为是3的倍数和不是3的倍数.
如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.
如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.
大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;
2010是(1,2,3,5,6倍数)不符合题意;
2016是(1,2,3,4,6,7,8,9倍数)满足题意.
2016<2240;
故答案为:2016
16.解:一个自然数N恰有9个互不相同的约数,则可得N=x2y2,或者N=x8,(1)当N=x8,则九个约数分别是:1,x,x2,x3,x4,x5,x6,x7,x8,其中有3个约数A、B、C且满足A×A=B×C,不可能.
(2)当N=x2y2,则九个约数分别是:1,x,y,x2,xy,y2,x2y,xy2,x2y2,其中有3个约数A、B、C且满足A×A=B×C,
①A=x,B=1,C=x2,则x+1+x2=79,无解.
②A=xy,B=1,C=x2y2,则xy+1+x2y2=79,无解.
③A=xy,B=x,C=xy2,则xy+x+xy2=79,无解.
④A=xy,B=x2,C=y2,则xy+x2+y2=79,解得:,则N=32×72=441.
⑤A=x2y,B=x2y2,C=x2,则x2y+x2y2+x2=79,无解.
故答案为441.
17.解:(58+14)÷2
=72÷2
=36(分)
答错:(5×10﹣36)÷(2+5)
=14÷7
=2(道)
答对:10﹣2=8道.
故答案为:8.
18.解:△ADM、△BCM、△ABM都等高,
所以S△ABM:(S△ADM+S△BCM)=8:10=4:5,
已知S△AMD=10,S△BCM=15,
所以S△ABM的面积是:(10+15)×=20,
梯形ABCD的面积是:10+15+20=45;
答:梯形ABCD的面积是45.
故答案为:45.
19.解:每一个计算周期运算3步,增加:15﹣12+3=6,
则26÷3=8…2,
所以,100+6×8+15﹣12
=100+48+3
=151
答:得到的结果是 151.
故答案为:151.
20.解:根据分析,从甲开始,乙欠甲1元,故甲应得1元,甲欠丁4元,故甲应还4元;
清算时,甲还应拿出4﹣1=3元,此时甲的账就结清了;
再看看丁的账,丁得到甲的4元后,还给丙3元,即可结清;
再看看丙的账,丙得到丁的3元后,还给乙2元,丙的账也清了;
再看看乙的账,乙得到丙的2元后,还给甲1元,乙的账也结清;
综上,甲只须先拿出4元还给丁,后得到乙的1元,故而甲总共只须拿出3元.
故答案是:3.
21.解:列举如下:
1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;
通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.
故至少需要选出6个数.
故答案为6.
22.解:行驶300米,甲车比乙车快2小时;
那么甲比乙快1小时,需要都行驶150米;
300﹣150=150(千米);
故答案为:150
23.解:根据分析,AD=BE+EC=5+4=9,
AB=1+4=5,S△EFC=×EC×FC=×4×4=8;
S△ABE=×AB×BE=×5×5=12.5;
S△ADF=×AD×DF=×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.
S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:20.
24.解:依题意可知:
当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.
当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.
当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.
当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.
故答案为:四
25.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;
再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.
根据这两个范围可知可能是18、19、20、21的一个数.
又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.
只剩下18、19这两个数了.一个一个试,
18×18×18=5832,18×18×18×18=104976;
19×19×19=6859,19×19×19×19=130321;
符合要求是18.
故答案为:18.
26.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,
所以两人在E点相遇时,甲行了:(100×4)×=240(米);
乙行了:400﹣240=160(米);
则EC=240﹣100×2=40(米),DE=160﹣100=60(米);
三角形ADE的面积比三角形BCE的面积大:
60×100÷2﹣40×100÷2
=3000﹣2000,
=1000(平方米).
故答案为:1000.
27.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,
最后得到的图形是A,
故答案为:A.
28.解:如图,因为,从A到B有5条直连线路,
每条直连线路均有5种不同的路线可以到达B点,
所以,共有不同线路:5×5=25(条),
答:从A到B,有25条不同的路线,
故答案为:25.
29.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
30.解:依题意可知:
2个偶数中间间隔是2个奇数.
发现只有数字10,11,9,12是符合条件的数字.
乘积为10×12=120.
故答案为:120
展开阅读全文