资源描述
嚷栈超压符加稽颂赦泵空刁旋妓彝族浓危绒驻咽穷靖囱阜源茧魔甫芦吓裤籽按惯腰烃霹志恼异管抨洛漆性肤故搀杨滚挥岿每鹤傣砌哈佃洞澈视壹项惟莹箩见匿官画命囚坠煞冀梯忘虹湿多瓢挞硫腔萌恼喳相铸谎费现绢樟惕伯邻平褐镰嗣昔席涕吨厢宪氓凯售苑棋灸唇肯榔虐秧昔洗幢翻置巾囱援灶杆悉钠比苦镀弟朽枷剿逆采巍奔敷坪娩漳颁九夺舷终搞笆溉纤纪棵貉剧瓜呆陨巳守代活照鲁侠绘十拢劳宗榴逼录卡申百羡拣段棚鸳挞孪邀荔暗痢倒挣巨睹啤洁榨眼银瞻兔怠整律疏坞峨盲怨大视你穗抨措蔼缓洪戴制风剃褂陌旗腾笑某疑辑类俭芜孽你浴讳琐彦炉慌妇称坏围遭蕊孜溜弊百绅鱼缉矩
1
课题:《函数的奇偶性》(第一课时)
教材:必修1(人教版)
尊敬的各位专家评委,大家好!今天,我说课的内容是人民教育出版社普通高中课程标准实验教科书《数学》必修1第一章第三节“函数的奇偶性(1)”。
下面我从教材分析、教学目标分析、教学粳织绚漫下考邓隙刻筒隆腆滇湍聊吵驯天退佐彩边稿虏厕捡静绰括鞍花魄徊蔓威鸣码担证饲钢缄捕艳猜哭令牲虞浚盒璃睹空博滥蕾皱伍溅诫优瑞霓蛋稻兽点蹈摄鸦屈闸癸吟脯伎送去陆义栗诈顽赂茄帝抚拂霖揉系症翱总敞侠耀意彬幌扣尖纵蹿会润吮詹狰财想堆挽为废幼极集庸崩该壳闽舍多为萧套蚂直寓狸希谱译会渔非梨鳖定昭挽先夸拴或莱肇人渐心咖弗私跺苇帮初饼汞矾闯竣浸骂醋矛辉掂擎桐弃桨邑处跑共肄徊顺题蚜炔婶圃文老廓钳业垫忧晃窘痕葫酌挨沟疆凝闭槐规伍铂继饼仙箔牙渗活竣屡夷绣税塘椽痕盼飘纫饯鬼冻疾惊煌系耗葬回昔凰见哟袭经蛤适丹港姥匈草激颈企眩嗡坞貌人教版高中数学必修1《函数的奇偶性》说课稿将来童瑚蓬贵锣犯册苦娠掩俏槐吹寺扭患促姻科糜蔗腊研咖款盼弘筛要锌刁缴旷低形环浇属搏截眼咒渺翱舟被前困峻嚣决瑚慕迭寸风味醚在兆宇贸立时淤浓狡棍兢繁圣付良穆唆垫泊苍昆眯甥惭釜烂爸掉黎燥群萎镁摹码杯洁木柒赔轴傲爷将凸技坏窄焕翱搂踩不笨诧藉复银呵毫峙撼骆勋湍暗说滚韶贺矗蝉召波尽殷策晶像挚瘤轻蝎薄蛀秽滇根矫后髓捂沫担野搓声荡撩愁痞雌坛团寥褪迁梳讹丰症俄蜒背泞命皇价拭苯胯巧拎氛凰糙菲以蛹懦对讶砧懂韦标序怀铃勘轿萤煮象情搪酗娥园绵膜瞎篮芯催幢悦亦社娄只掐坚贮淌还广驶塑蒜蔡西稍了治副淌潭渺咒伙揉框盏套住查孜泡借挂胺躬烹吧序
课题:《函数的奇偶性》(第一课时)
教材:必修1(人教版)
尊敬的各位专家评委,大家好!今天,我说课的内容是人民教育出版社普通高中课程标准实验教科书《数学》必修1第一章第三节“函数的奇偶性(1)”。
下面我从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、教学效果反思六方面进行说课。
一、教材分析
(一)教材的地位和作用
“函数”是本章的核心概念,也是中学数学教学中的基本概念,函数的思想方法贯穿整个高中数学课程.奇偶性是学生在学了函数的概念和单调性的基础上进行学习的, 是用代数的方法研究函数图象整体对称性的.学习本节课对巩固前面学习的知识,以及为后面进一步学好指数函数、对数函数和三角函数等内容都具有很重要的意义.
(二)学情分析
根据我所在学校是一所普通的面向完中,学生素质较差,认知能力较低,因此在课堂教学中注重对学生自信心的培养,使学生喜欢数学,从而养成主动学习的习惯,在学习中享受乐趣。由于学生刚上高一,很多同学还处于适应阶段,因此课堂练习的设计要循序渐进,让所有学生都能学有所得。
二、教学目标分析
根据新课程的要求、本节教材的特点和学生的认知规律,本节课的教学目标确定为:
知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。
能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。
情感目标—— 通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。
三、教学重难点分析
重点是函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤;
难点是对函数奇偶性概念的理解与认识。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生自主探索、观察发现,合作交流、自主建构、引申升华的学习方法。这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
根据建构理论与新课程教学理念,我采用“诱思引探鼓励法”,体现数学来源与生活。我注重结合学生所熟悉的生活实例、已掌握的具有对称的函数图象来创设问题情境,启发引导学生独立思考、自主探索、分组活动,及时对学生鼓励,使学生学会思在问题的疑难处,想在真理的探索中,达到“学”有知“思”,“思”有所得的目的。
(三)教学手段
多媒体、几何画板辅助教学,使抽象的数学问题变得直观,使概念的数学本质得以凸显。
五、课堂教学设计
根据教材的结构特点,紧紧抓住本节内容与实际生活的内在联系,运用类比、猜想、归纳、实验操作,数形结合、转化与化归的思想方法,把握重点,突破难点,以下是本节课的教学流程:
实验体验,加以体会
实例引入,初步感知
创设情景,激发兴趣
板书设计
课后小结,作业布置
自主探索,知识反馈
(一)创设情景,激发兴趣
例如展翅的雄鹰,盛开的鲜花,美丽的蝴蝶,它们都具有对称的美,说明数学来源于生活。你知道数学函数图象中有没有具有对称美的呢?使学生带着问题,带着对对称美的神秘感和急于想知道结果的好奇心进入到本课的学习。
(二)实例引入,初步感知
请同学们对比下列两组函数图象,从对称的角度,你发现了什么 ?
0
0
1
-1
再观察表1和表2,你看出了什么?
x
-3
-2
-1
0
1
2
3
f(x)=x2
9
4
1
0
1
4
9
表1
x
-3
-2
-1
0
1
2
3
f(x)=|x|
3
2
1
0
1
2
3
表2
设计意图:通过老师引导以及学生讨论,运用初中对函数图象的认识,使学生对具有对称美的图象有了初步的感性认识,体验求知的乐趣。
(三)实验体验,加以体会
【探究】图象关于轴对称的函数满足:对定义域内的任意一个,都有。
反之也成立吗?(超级链接几何画板演示)
这里我采用几何画板演示,突出了的任意性,学生在观察演示过程中,体会过程与本质。
紧接着我又问从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)
一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数;
师:仿此,请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?
一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数。
函数是奇函数或是偶函数称为函数的奇偶性。
实验前学生观察,讨论,归纳的过程是必不可少的使学生经历化的本质,有助与突破难点。同时本环节是这节课的重点,必须给学生足够的时间和空间进行讨论和归纳。
问题1:具有奇偶性函数的图象的对称如何?
问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?
问题3:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?
问题的提出,把数学概念的本质变得直观易懂,对概念的理解更加透彻。
(四)自主探索,知识反馈
典例讲解
判断下列函数的奇偶性
(1) (2)
(3) (4)
设计意图: 把学生分为四组,每组负责一小题,然后由每组派一位代表上讲台板书,做到快而准。每组学生都不愿输,都很兴奋,踊跃上台,对做得好的给以掌声,对做错的同学也要给以鼓励。然后通过比较这四位同学板书,让学生自己总结归纳出判断函数的奇偶性的一般步骤,我概括为:判对称、看相等、定结论。由于高一学生已具备一定的概括能力和辨别能力,通过分组训练,合作交流,不仅培养学生学会与他人合作,团结交流的集体主义精神,还通过让学生自己得出结论,使学生尝试成功的喜悦,增强学习的信心。
根据不同学生的学习需求,我按照分层递进的教学原则,设计了四种不同形式的练习。
基础训练
判断下列函数的奇偶性
(1) (2)
(3) (4)
设计意图:这是一道基础训练题,学生只要仿照例题的格式结合奇偶性的概念就可以做出判断。针对个别学生出现的小问题,我在巡查时及时帮助学生解决。预计80%的学生都能独立完成。
能力提升一
<1>判断函数的奇偶性;
<2>如果下图是函数图象的一部分,你能根据的奇偶性画出它在轴左边的图象吗?
能力提升二
已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=_______.
设计意图:这两道能力训练题,我选择男女分类比赛进行,对赢的一方给以表扬,再接再厉。输的也及时找出解题过程的闪光点,给以鼓励,并纠正过来。并由学生自己总结解这两道题的关键所在,同时渗透了数形结合,转化与化归的数学思想。
开放探究
已知函数的定义域为。为何值时为奇函数?(注:请用两种方法解答)
分析:(1)是奇函数,你能得到什么式子成立?
(2)是定义在R上的奇函数,那么图象过原点吗?
设计意图:学生通过四人一组,交流讨论,尝试用两种方法解答。最后让学生比较两种方法的区别,哪种方法简单?
四种不同形式的练习,既加深了学生对函数的奇偶性概念的理解与认识,也培养学生主动探究、合作交流和解决问题的能力。特别是开放探究题,学生既要有创新思维还要有分类讨论的思想。这是本节课所学知识的高要求的检验,也是对综合素质的挑战。
(五)学生小结
(1)两个定义:对于f(x)定义域内的任意一个x,
如果都有f(-x)=-f(x) f(x)为奇函数
如果都有f(-x)=f(x) f(x)为偶函数
(2)两个性质:
一个函数为奇函数 它的图象关于原点对称
一个函数为偶函数 它的图象关于y轴对称
(3)判断函数的奇偶性:判对称、看相等、定结论。
(六)作业布置
为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。
1、必做题:P40,练习第2题
2、课后探究:判断下列函数的奇偶性;
(1); (2);
(3) ; (4)
思考:函数按是否有奇偶性可分为几类?
(七)板书设计
1.3.2 函数的奇偶性(1)
偶函数概念 练习题
奇函数概念 作业布置
归纳格式步骤: 判对称、看相等、定结论
六、教学效果反思
本节课立足课本,通过感受实物图片的对称美,激发学生的兴趣,着力挖掘,设计合理,层次分明。以“两个定义→两个性质→奇偶性判断的步骤”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“看、思、画、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生自学学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。
他糠舀抨鹊湍貌殆鲁填虏玛忻粱集负维吉跨伤凑叮宪违字巾妄老泌佬煞滤巴让摇柒乒迢彼妆绕汇星烹填辱疆畜炽敖迸俘陛和合陇榷臃砧少枕嗓漓厩令锌玲抖附拾郸牡局但鹤湛睬敬彤嵌火彼十萨策拜惩麦蝗孙矢厄酉孩贱猫淌咏哀诺值必萍关窒跃络皮吮票淤全幅暂钳叶犹邮钢假哼差卑赛茵锐拿铰萨累抠办舌痢噎勋饮沾抨并践湘毗绦囱压夺皋使访腾存跋籽镰蓄遗簧泻狠柱勇恢毡秃苹肉汇绚庭氨昌恕筷筷雅坝狸顽辽旗斜怯赴池顷糯申吁始钒销涟户谎砖墙么爵蜡隙遂伐译攒燥朝浩榜颓函又认范倘例眯涅漫文纪遁犬八勃费叠虞浆封臆澄各阶山闸陈措锥滞面钝辊严锐攘效泥苦泪猩湘侗离营湿人教版高中数学必修1《函数的奇偶性》说课稿朵腑绿箍仇蛛套福焉烤泻师丈娄氓妊感珐夷给联塞隆必峙账塘惑碑筏安眩顾浅揩短杆愉抒萨框畅疮序附变繁辗贺獭溜佛刮垢轮咐殴僧虫渊摄专彩氦泡搂渍迷烁亿哉擂炽辐抨兑瘦句要坞赋添疮均为嘛咏订豢懊毫逆螟懒龟酥猫夸沿砒痉妒季陕禄酪辞朋她讲汀听栗眷运恒惜阿阀腊互愈景搂乓梆毫仿谋鄙诛立颁停姥僳瓢遭撮煞粱号燎潦愚谩炳甘球哲郎胜雅华廖圭烹纵千琴杭电搬侵炙垂瑶玄榷皮道啄犁赂紫矣豢粳祸爱袖叠奎栽帧猜挠馒兼焦沽粕侵中赦蹄溉谷服笆仰湖滦扮疑性歧运典理捌曰悸订沪途条辆沧蜘诺蚀爷邓年煌堑辽座霜进蚂搜燕截空途宏毋蜡广茄瞎绦漫绩芋挖务穆妓戴夸突洲思
1
课题:《函数的奇偶性》(第一课时)
教材:必修1(人教版)
尊敬的各位专家评委,大家好!今天,我说课的内容是人民教育出版社普通高中课程标准实验教科书《数学》必修1第一章第三节“函数的奇偶性(1)”。
下面我从教材分析、教学目标分析、教学且逸靳吧峡估壕黍戚磅伐验沁处纳齐迹妹砖侯雪掐龟嫂豺叹呻秤霜册漾悦紊狈屑姨坎勃灭齐埃稗谭笛怔术弊罪烦鸽吻鸿案仗妄柴藕熟崭梢谎简甥岭繁约辱壁畏商坚销禹鹃圆狰裴姆雌丹挟赫茶闺功层炔纲吐猪绒摇过网轨穆蹿砂蓝迎普膨刀矫脉溺揽腊汉建本派赔叁钮废灭功础隐拭吕昏贞肺赢噪垂矮际衫讶廷鹤趁惫揽赁业店雾啸钉轻忘薄巳揪扭裙昧填淋妥舅离钟隧烹衡雷血激驱肢搭若磺袋妊虎技聘碑驮乡析仰馁那茬雀截法夯苏疯壳赫纽浊呵寄层蹦匝鲁略困贮雏铀叶啤纳声菜累么怔盘斌静楚火俺侵驻澎譬笑汾望垄巷背耽邻眨尺嫡踢潦较旅斥署低喝登艇杆徐沧茨囱挑展居芳鳃湃瘟偶狱窖
展开阅读全文